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Summary

Space/fast-time adaptive radar signal processing techniques have been shown to im-

prove target detection in the presence of terrain scattered interference (TSI). These

techniques exploit the temporal correlation of the jammer multipath components that

make up the composite TSI signal. In a more di�cult scenario, where a target is ob-

scured by the direct path jammer signal and spatial nulling is rendered ine�ective,

TSI has been shown to aid in the suppression of the mainbeam jammer by a similar

exploitation of the temporal correlation of the jammer multipath with the direct path

jammer signal.

Once target detection has been accomplished, target tracking algorithms re-

quire accurate azimuthal and elevation angle readings of the target's position. How-

ever, the angle estimation problem has been con�ned primarily to purely spatial

techniques and, therefore, fails to exploit the temporal correlation inherent in the

interference. As with detection, much can be gained from the temporal correlation of

the interference for improving angle estimation.

This thesis investigates two applications of space-time adaptive processing for

angle estimation that take advantage of this correlation. In one application, fast-

time processing coupled with spatial processing is used to improve angle estimation

performance in the presence of TSI and mainbeam jamming. This technique com-

bines space-time processing with monopulse techniques to yield an angle estimation

algorithm. Results on experimental Mountaintop TSI data demonstrate the merit of

the proposed algorithm under varied jamming and TSI conditions. For the second



application, monostatic clutter is also considered. Monostatic clutter (MSC) is pro-

duced by ground re
ections from the radar's own transmitted signal that are incident

on the radar aperture and possesses strong correlation in the space-Doppler domain.

The use of joint space, fast-time, and Doppler processing is necessary to treat all

three interference types simultaneously, but such processing is found to be computa-

tionally prohibitive for even small arrays. Current approaches separate the problem

into two stages where TSI is suppressed �rst and then MSC. The problem with this

cascade approach is that during the initial TSI suppression stage the MSC becomes

corrupted. In this thesis an innovative technique is introduced for achieving a signi�-

cant improvement in cancellation performance for both MSC and TSI, even when the

jammer appears in the mainbeam. The majority of the interference rejection, both

jamming and MSC, is accomplished with an MSC �lter, with further TSI suppression

accomplished via an additional tapped reference beam. Application of an appropriate

set of constraints and simultaneous optimization of the MSC �lter weights and refer-

ence beam weights yield the desired sum and di�erence components of the monopulse

processor. Performance results using Mountaintop data demonstrate the superiority

of the proposed processor over existing processors for both ground based and airborne

radars and jammers.

xvi
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CHAPTER 1

Introduction

The purpose of a monopulse radar is to perform angle tracking in the presence of inter-

ference. The same types of interference that hamper target detection in a surveillance

radar also work against angle estimation in a monopulse radar. A typical source of

interference is barrage noise jamming, where the jammer directs a wide spectrum of

temporally uncorrelated noise energy at a radar's aperture with the intent of over-

powering weak target returns. Phased array radars can e�ectively mitigate such

interference by placing a spatial null in the direction of the jammer. However, when

the angular separation between the jammer and target is su�ciently small that the

jammer falls within the mainbeam of the radar's receive pattern, a more potent form

of jamming is realized called mainbeam jamming. In such a case, spatial adaptive

processing is inadequate and alternative solutions must be sought. A second and

more di�cult source of interference to contend with than ordinary sidelobe jamming

is monostatic terrain clutter. Monostatic clutter (MSC) consists of re
ections of the

radar's own transmitted signal from surrounding terrain. Typical MSC is spatially

diverse and, therefore, does not lend itself well to spatial nulling. Velocity discrimi-

nation by means of combined spatial and Doppler (i.e., space/slow-time) processing

has been shown to be e�ective in mitigating MSC [7, 66, 67, 59].

A third and less common type of interference is terrain-scattered interference

(TSI). Terrain-scattered interference is caused by a jammer that directs some or all of

its energy at the surrounding terrain. The re
ected jammer energy arrives at the radar



aperture with di�erent delays and from di�erent directions, and, therefore, the com-

posite TSI signal has a wide spatial and temporal extent that renders spatial nulling

ine�ective. However, the TSI signal can be modeled as the output of a linear time-

invariant system that represents the terrain surface with the jammer waveform as its

input. As such, it is possible to utilize a system identi�cation approach for mitigating

the TSI; in other words, perform space/fast-time adaptive processing. A number of

fast-time adaptive algorithms have been proposed and applied to the TSI mitigation

problem. Most notable are the single reference Beam Canceler (SRB) [46, 18, 19]

and its generalization, the Beamspace TSI Canceler by Kogon [34, 31]. The element

space equivalent of the Beamspace TSI Canceler was developed concurrently by Grif-

�ths [24]. Conversely, it is shown in [31, 32, 33, 37] that coherent multipath can be

exploited to improve signi�cantly interference mitigation performance in a mainbeam

jamming scenario. The operation of this processor is based on the principle that

delayed jammer re
ections from the ground (i.e., TSI) present in the sidelobes can be

used to estimate and, thus, cancel the direct path jammer in the mainbeam, which is

similar in concept to the cancellation of wideband mainbeam jammers [15]. It has also

recently become popular to borrow from the monopulse technique, traditionally used

for angle estimation, to improve interference mitigation in the presence of mainbeam

jamming. For instance, an adaptive space-time technique by Fante, that employs

a conventional beam and a tapped reference monopulse di�erence beam to provide

target free multipath information, provides improved mitigation performance in the

presence of TSI and mainbeam jamming [14]. A similar technique by Jones employs

additional tapped monopulse beams with Doppler compensation channels for improv-

ing mitigation performance in the presence of nonstationary mainbeam interference

[30].

Although these various algorithms are able to mitigateMSC or TSI individually,

in an airborne surveillance radar the two seldom occur separately. Three-dimensional

adaptive processing (i.e., in space, fast-time, and slow-time) was proposed as a means

2



to combat the combined e�ects of jamming, TSI and, MSC [16]. However, for even a

modest number of elements, pulses, and taps, the adaptive processor becomes compu-

tationally prohibitive and requires excessive training data. By employing a reduced

cluster of beams in the beamspace, a slight reduction in the number of spatial de-

grees of freedom could be accomplished [16], but it is still insu�cient for practical

consideration. In [51], a variation of the reduced rank beamspace approach was pro-

posed, which included the added features of variable beam taps and weight thinning.

The factored beamspace approach by Kogon [31, 36] was designed to operate in the

presence of combined jamming, TSI, and MSC by applying two adaptive stages in

cascade. The �rst stage removes the TSI and jamming from the returns, with the

second stage removing the remaining MSC interference. This algorithm, although of

practical consideration, su�ers from the \modulation" e�ect [51] where MSC interfer-

ence is shifted and spread in Doppler. Preventative measures against the modulation

e�ect are discussed by Rabideau for both the factored beamspace algorithm and for

the reduced rank three-dimensional beamspace processor [51].

Extensive work has been done on the problem of adaptive angle estimation in

the presence of sidelobe jamming and, to a lesser extent, mainbeam jamming. In

[5], Brennan derives a lower bound on angle estimation performance for a phased

array, and proceeds to compare angle estimation performance for amplitude compar-

ison and phase comparison monopulse against that bound. In [11], Davis, Brennan

and Reed used a maximum-likelihood angle estimator to derive adaptive sum and

di�erence monopulse beams for nulling the external noise sources (i.e., jammers).

Simulation results were presented for both sidelobe and mainbeam jamming. Nickel

extended the maximum-likelihood estimation technique to alternative array geome-

tries, subarray adaptive arrays, and arbitrary sum and di�erence beams [47]. In [10],

constrained optimization was employed to improve the quiescent pattern character-

istics of the distorted sum and di�erence beams that occur as a result of mainbeam

jamming. Gabriel [20] employed a Butler matrix formulation [42] to arrive at adap-

3



tive sine/cosine illuminated sum and di�erence monopulse beams. An investigation

of adaptive monopulse in a mainbeam jamming scenario was presented in [40, 39, 41]

with a derived set of Cramer-Rao bounds that put a theoretical bound on achievable

performance. In [40, 39] the adaptive monopulse system was based on Gabriel's for-

mulation [20], whereas in [41] a new monopulse system based on a sidelobe canceler

architecture was formulated. Virtually no work, however, has been done on angle-

estimation techniques that address the problems of TSI and combined TSI and MSC,

particularly when mainbeam jamming is present.

It is the primary goal of the thesis to treat the problem of angle estimation in

these more complicated interference environments by applying and extending some of

the adaptive techniques and ideas of TSI and mainbeam jamming mitigation devel-

oped in [31, 34, 35, 32, 33, 37, 22, 23] to the problem of angle estimation. Initially, the

extension of standard monopulse to space-time monopulse will be con�ned to the case

of TSI and mainbeam jamming. With the appropriate constraints, the space/fast-

time processor of Kogon will be be made into a pair of sum and di�erence processors

that make up the key component of the monopulse system. The space/fast-time

monopulse processor is shown to o�er improved performance over existing spatial-

only techniques.

In the second part of this thesis, a new three-dimensional reduced rank algo-

rithm will be introduced that is able contend with the combined e�ects of mainbeam

jamming, TSI, and MSC, o�ering both improved interference mitigation and angle

estimation performance over existing methods. Finally, the new technique is extended

to perform monopulse.

4



5

CHAPTER 2

Space-Time Processing

Prior to presenting the algorithm development in Chapters 4, 5, and 6, background

material pertaining to the topics of relevance { space-time processing and the monopulse

technique { are addressed in this and the following chapter. Fundamental concepts in

array signal processing are introduced and developed in the context of radar. These

concepts are extended to the temporal domain corresponding to range in radar sys-

tems, and target and interference models are presented along with a number of the

techniques available for mitigating such interference.

2.1 Spatial Array Fundamentals

Classical transmitter or receiver devices utilize a single transmitting or receiving an-

tenna element to broadcast or receive the desired signal. The geometry and physical

orientation of the antenna determines its directional properties. For instance, an

omni-directional antenna element radiates uniformly in all directions and, conversely,

is equally sensitive to signals arriving from all directions. A directional antenna, on

the other hand, transmits and receives most e�ciently in the direction in which it is

oriented. Directional antennas are commonly found in radar and other devices that

require high gain in a particular direction.

With an array of antenna elements it is possible for the overall array to emulate

a variety of directional characteristics without altering the geometry, position, or



orientation of the individual antenna elements that make up the array. Proper phase

and amplitude adjustments of an outgoing signal waveform at the individual elements

focuses the radiated energy in a particular direction. Likewise, phase and amplitude

weighting of incoming signals sensitizes the array to a particular direction. Utilizing

phase and amplitude weighting as a means to achieve a desired steer direction is

typically referred to as phase steering or beamforming [29].

Planar arrays (i.e., elements con�gured in a plane) permit beamforming in

azimuth and elevation, whereas linear arrays (i.e., elements con�gured on an axis)

permits beamforming in one but not the other. The number of elements in an array

and their spacing determine the extent of the angular and temporal resolution a�orded

by the array. The particular con�guration considered here is a uniform linear array

(ULA) having N equally spaced elements, D meters apart. The array output at time

t is represented by the N � 1 vector

x(t) =

h

x

0

(t) x

1

(t) � � � x

N�1

(t)

i

T

; (2.1)

where x

n

(t) are the voltage levels at the sensor outputs indexed 0 through N-1 and

superscript T denotes the transpose operator. Delay-and-sum beamforming entails

applying a set of weights and delays to the sensor outputs and summing them together.

A localized far �eld source transmits or echos a signal, s(t), that arrives at

the array approximating a plane wave as shown in Fig. 2.1. For a given angle of

propagation (with respect to array broadside), �, the time lag between wavefronts

impinging on neighboring sensors is

� =

D sin�

c

; (2.2)

where c is the speed of propagation. If the incoming signal is narrowband (e.g., a

complex sinusoid), then delays correspond to phase shifts and can, thus, be incor-

porated into the beamformer weights as complex phases. The normalized vector of

beamformer weights

a(�) =

1

p

N

h

1 e

j2��

� � � e

j2��(N�1)

i

T

; (2.3)
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Figure 2.1: Plane wave impinging on an array.
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also known as a steering vector, aligns the sensor outputs so that they sum coherently.

These weights result in the maximum possible beamformer output (sensitivity) for a

signal having spatial frequency � (or corresponding angle �)[29]. In order to prevent

spatial aliasing (i.e., angular ambiguities), the inter-element spacing must satisfy

D <

�

2

, where � =

c

f

c

is the wavelength corresponding to the highest frequency

component, f

c

, in s(t) [29]. The spatial frequency variable is related to angle by

� = f

c

� =

D

�

sin�: (2.4)

The beampattern [29] is de�ned as the response of a �xed beamformer, speci�ed

by its weight vector w, to an ideal signal arriving from direction �

W(�) = w

H

a(�); (2.5)

where superscript H denotes the complex conjugate transpose operator. For the

conventional beamformer weights, w = a(�

0

), the beampattern is shown in Fig. 2.2

and is given by

W(�) =

1

N

sinN�(� � �

0

)

sin �(� � �

0

)

: (2.6)

The mainbeam consists of the central lobe containing the steering vector look direction

(i.e., �

0

= 0

�

), whereas the sidelobes consist of the remaining lobes in the spectrum.

The 3 dB beamwidth of the mainlobe is de�ned as the angular distance between the

half power (i.e., 3 dB) points on the mainbeam [61]. Regardless of the number of

sensors, the beampattern for the conventional beamformer is characterized by a peak

sidelobe level that is 13 dB below the mainlobe peak.

2.2 Radar Background

2.2.1 Fundamentals of Radar

A radar (radio detection and ranging) device transmits a waveform into the atmo-

sphere and then listens for echos as the transmitted waveform re
ects back from

8



−50 0 50
−50

−40

−30

−20

−10

0

Angle of Arrival (deg)

G
a
in

 (
d
B

)

→ ← 3 dB beamwidth

peak sidelobe level

Figure 2.2: Beampattern for conventional beamformer of a 14 sensor array with half

wavelength element spacing.

9



Waveform

Mixer

Mixer

Video

DuplexerRF
Power Amp

LO

IF AmpMatched
Filter

Detector

Figure 2.3: Conceptual block diagram of a radar system.

surrounding objects. Depending on the radar, various types of information can be

obtained from the incoming echos about the desired scatterer object, known as the

target. Range information can be inferred from the amount of time it takes the trans-

mitted signal to travel to an object and then arrive back at the receiver. Directional

information can be attained by scanning the surrounding space with a directive beam.

Velocity or target movement can be determined through measuring the Doppler shift

induced in the re
ected waveform. The accuracy or resolution to which any of the

above parameters can be measured depends to a large extent on the physical param-

eters of the radar and its electronics and to some extent on the environment in which

it operates.

Di�erent applications of radar call for di�erent operating characteristics. Early

warning airborne (AEW) radars typically operate in the UHF frequency range (300{

1000MHz) with average transmitter power in the KW (kilowatt) range [61]. The

receiver bandwidth can be on the order of a few hundred KHz to a few MHz depending

on the desired range resolution. A conceptual block diagram of a radar system is

shown in Fig. 2.3 [61]. A duplexer permits the antenna to serve both the transmitter

and receiver. The transmitted signal is typically generated at video frequency and

boosted to RF where it is ampli�ed and transmitted through the antenna. The
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received signal is then ampli�ed and mixed down to baseband where it is matched

�ltered, processed, and displayed.

2.2.2 Modern Pulsed Airborne Radar

Considered here is a radar system that transmits a sequence of M coherent pulses

and samples the returns on an N element ULA.

1

The transmitted waveform is often a

linear, frequency modulated (LFM) pulse having time duration, T

p

, and bandwidth,

W

p

. The radar collects L temporal samples from each element receiver at each pulse

repetition interval (PRI), where each time sample corresponds to a range cell. The

three-dimensional datacube structure depicted in Fig. 2.4 represents the sampled re-

turns in a single coherent processing interval (CPI) of M pulses. This set of samples

is denoted by a sequence of M matrices X

(m)

(i.e., one for each pulse) with elements

x

(m)

(n; l). To distinguish between temporal dimensions, the inter-PRI sampling di-

mension is referred to as slow-time and the range cell dimension as fast-time [65]. The

element and slow-time dimensions are typically denoted in the frequency domain as

spatial frequency (�) and Doppler (f), respectively.

1

In the notation used here, N denotes a scalar constant, n a spatial vector, and N a space-time

vector or matrix.
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From Fig. 2.4, a spatial snapshot consists of N elements of spatial data from

the t

th

range cell (i.e., t

th

column of X

(m)

),

x

(m)

(t) =

2

6

6

6

6

6

6

4

x

(m)

(0; t)

x

(m)

(1; t)

.

.

.

x

(m)

(N � 1; t)

3

7

7

7

7

7

7

5

: (2.7)

A space/slow-time (SST) snapshot, X(t), consists of stacked element data from con-

secutive pulses at a given range cell,

X(t) =

2

6

6

6

6

6

6

4

x

(0)

(t)

x

(1)

(t)

.

.

.

x

(M�1)

(t)

3

7

7

7

7

7

7

5

: (2.8)

Similarly, a space/fast-time (SFT) snapshot, X

(m)

T

(t), consists of T consecutive spatial

snapshots in descending order (i.e., T consecutive descending columns of X

(m)

):

X

(m)

T

(t) =

2

6

6

6

6

6

6

4

x

(m)

(t)

x

(m)

(t� 1)

.

.

.

x

(m)

(t� T + 1)

3

7

7

7

7

7

7

5

: (2.9)

The two-dimensional SST steering vector steered in the direction of the desired

spatial and normalized Doppler frequency pair (�,

�

f) is de�ned as

v = v(�;

�

f) = b(

�

f)
 a(�); (2.10)

where 
 denotes a Kronecker product [27]. Assuming a uniform linear array and �xed

PRI, the spatial and temporal phase-centered steering vectors are de�ned respectively

as

a(�) =

e

�j��(N�1)

p

N

h

1 e

j2��

� � � e

j2��(N�1)

i

T

(2.11)

12



b(

�

f) =

e

�j�

�

f(M�1)

p

M

h

1 e

j2�

�

f

� � � e

j2�

�

f(M�1)

i

T

: (2.12)

The normalized Doppler frequency is

�

f = fT

r

where T

r

is the PRI.

2.2.3 Interference Environment

For modern pulsed airborne radars the availability of spatial information and two

kinds of temporal information, slow-time and fast-time, is necessary in order to de-

tect targets in the presence of strong interference. Primary sources of interference

include monostatic clutter (MSC) caused by the re
ections of radar signals from

the surrounding terrain, direct path jamming, and multipath jamming components

known as hot clutter or terrain scattered interference (TSI). Returns containing MSC

are correlated in space and slow-time, whereas returns containing TSI are correlated

in space and fast-time. Both target and interference models are considered here.

A moving point target is typically modeled as a space-time steering vector

having gain �

t

and occupying a single range cell,

X

tgt

(t) = �

t

v(�;

�

f)�[t� T

t

]; (2.13)

where �[t] is a discrete impulse function (i.e., equals one when argument is zero, and

zero otherwise). The time taken for the re
ecting echo to arrive back at the radar is

proportional to the target range (r

t

) [48],

T

t

=

2r

t

c

: (2.14)

The target is characterized by spatial frequency �, which is related to the target angle

by (2.4), and normalized Doppler frequency,

�

f =

2v

t

T

r

�

; (2.15)

where v

t

is the target's radial velocity with respect to the radar platform [66]. An

example of the space-Doppler spectrum of a target signal is illustrated in Fig. 2.5.
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Figure 2.5: Space-Doppler spectrum of a target signal (left), jammer signal (center)

and monostatic clutter signal (right).

The most fundamental form of interference is thermal noise appearing at the

sensor outputs. Such noise is generated internally in the receiver electronics and

is independent from one receiver to the next. Assuming separate receivers at each

element, the thermal noise in an array is spatially and temporally uncorrelated (white)

[66]. The thermal noise typically represents the lower-bound on achievable mitigation

performance. As a result, both target and interference power levels are often expressed

relative to the noise power or noise 
oor, �

2

n

, a practice that is adopted throughout

the thesis.

Barrage noise jamming is the most common form of hostile interference. Such

interference emanates from a spatially localized source and is temporally uncorrelated

from sample to sample as well as from PRI to PRI. It is modeled as the Kronecker

product of a white Gaussian M � 1 noise vector, n

j

(t), with a spatial steering vector,

X

jam

(t) = n

j

(t)
 a(�); (2.16)

where the power of each component of n

j

(t) is �

2

j

. Based on this model, the jammer

has spatial correlation only. This is particularly evident from Fig. 2.5, where the

jammer energy appears spatially localized while spread in Doppler.

Re
ections of the transmitted signal from the surrounding terrain, known as

14



monostatic clutter, typically accompany the target return. The re
ecting terrain

surface, characterized by a large cross-sectional area at any given range cell, can easily

overwhelm the target. Since terrain characteristics vary signi�cantly from one location

to another, the precise correlation structure of the resulting MSC cannot be easily

captured in a single model. A simple clutter model assumes that for each range cell

there is a ring of terrain centered about the radar platform that produces re
ections of

the transmitted signal. For an omni-directional transmitter and uniformly re
ecting

terrain, the clutter returns can be modeled as,

X

msc

(t) = �(t)

Z

�

v

�

D

�

sin�;

2v

a

T

r

�

sin(�+ �

a

)

�

d�; (2.17)

where v

a

is the radar's platform velocity and �

a

is the misalignment between the array

axis and platform velocity vector.

2

The amplitude factor �(t) is typically considered

to be a white Gaussian random variable with square root variance that is inversely

proportional to the range index, t. As such, MSC is uncorrelated from sample to

sample. It is, however, correlated in space and Doppler. When there is no platform

misalignment, the energy of the clutter returns is focused on a ridge in the azimuth-

Doppler spectrum having slope

� =

2v

a

T

r

D

: (2.18)

For maximum unambiguous platform velocity the clutter ridge has a slope of 1 as

shown in Fig. 2.5.

The most complicated form of interference considered, and by far the most

di�cult to model, is coherent multipath commonly referred to in the radar literature

as terrain scattered interference (TSI). Just as the radar's transmitted signal re
ects

from the surrounding terrain to form a composite clutter signal at the aperture, so too

can the jammer signal re
ect from the surrounding terrain to form TSI as illustrated

in Fig. 2.6. Such interference can be intentional or a result of the poor sidelobe

2

for a more complete model, incorporating an elevation parameter, see [66].
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behavior that is characteristic of barrage noise jammers. The delayed and scaled

jammer re
ections integrate at the aperture to form the composite TSI signal. Since

the multipath components integrate over a wide angular extent and at varying delays,

the TSI signals at the array elements possess strong spatio-temporal correlation. The

terrain surface can be interpreted as a linear time-invariant spatio-temporal �lter,

h(t; �) [31, 34], and, as such, the composite TSI signal may be expressed as

X

tsi

(t) =

Z

0:5

�=�0:5

Z

1

�=0

h(�; �)x

j

(t� �)
 a(�)d�d�; (2.19)

where x

j

(t) is an M � 1 vector whose components are shifted versions of jammer

signal, x

j

(t), at multiples of the PRI interval,

x

j

(t) =

h

x

j

(t) x

j

(t� T

r

) � � � x

j

(t� (M � 1)T

r

)

i

T

: (2.20)

Typically, multipath components fade for su�ciently large delays, and, therefore, the

TSI signal is uncorrelated from PRI to PRI and, thus, in Doppler. When the radar

or jammer is moving, then Doppler shifts are induced in the re
ected multipath, and

a more complicated, time-varying, model must be employed, such as the one in [28].
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2.3 Adaptive Processing

The output of a linear time-invariant processor can be expressed as the inner product

of weight vector, W, and input vector, Y(t) [66]:

z(t) =W

H

Y(t): (2.21)

The vector quantity Y(t) represents the input to the processor and is de�ned accord-

ing to the type of processing employed. The simplest type of processing that can be

performed on the data is nonadaptive spatial processing, also known as conventional

processing or beamforming. In conventional spatial processing, W = a(�

0

) is the

spatial steering vector de�ned in (2.11), and Y(t) = x

(m)

(t) is a spatial snapshot.

Adaptive processing represents a more sophisticated class of processors and

typically requires solving for a set of weights, W, that is optimal in the mean square

sense. In other words, the mean square output of the processor,

� = E

�

jz(t)j

2

	

=W

H

R

Y

W; (2.22)

is minimized with respect to W subject to the constraints CW = c [29]. The

covariance matrix, R

Y

, representing the interference environment in the subspace

occupied by the input vector, is de�ned as the expected value [49] of the outer-product

of the input vector,

R

Y

= E

�

Y(t)Y(t)

H

	

: (2.23)

Note that stationary statistics must be assumed, otherwise the covariance matrix

itself is time-varying. The solution can be expressed in closed form as [29]

W = R

�1

Y

C

H

�

CR

�1

Y

C

H

�

�1

c: (2.24)

In the case of spatial adaptive processing, Y(t) is a spatial snapshot x

(m)

(t). For such

processing, the constraints, C and c, are typically selected so as to satisfy a unity

gain condition at the look direction frequency, �

0

=

D

�

sin(�

0

), (i.e., W

H

a(�

0

) = 1),

C = a(�

0

)

H

; c = 1: (2.25)
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The resultant processor is typically referred to as a minimum variance beamformer

[29]. Later in the thesis additional constraints will be considered, including null

constraints where some values of the vector c are zero.

In practice, the covariance matrixR

Y

is not known a priori and, must, therefore

be estimated. Substitution of the maximum-likelihood estimate,

^

R

Y

, of the covari-

ance matrixR

Y

in Eq. (2.24) results in a technique known as sample matrix inversion

(SMI) [52]. The sample covariance matrix is de�ned as

^

R

Y

=

1

N

L

N

L

�1

X

t=0

Y(t)Y(t)

H

; (2.26)

where N

L

is the number of snapshots employed in the averaging. The number of

statistically independent sample outer products must be at least the dimension of the

adaptive weight vector in order for the covariance matrix to have full rank, and, thus,

be invertible. Typically, N

L

is selected to be twice the dimension of the weight vector

so that performance is within 3 dB of optimum [4].

Since the nature of the interference is such that the covariance matrix rarely

attains full rank, even with the required number of samples in the estimate, the

resulting covariance matrix must be induced to have full rank by arti�cial means.

A technique known as diagonal loading is typically employed together with SMI in

order to arti�cially boost the lower eigenvalues [9]. Diagonal loading is accomplished

by adding to the covariance matrix a matrix having �

2

d

as its diagonal elements and

zeros elsewhere,

^

R!

^

R+ �

2

d

I; (2.27)

where I is a diagonal matrix of ones. By selecting the diagonal loading level to

be that of the noise 
oor, the matrix inverse is made robust to numerical precision

errors, and the covariance matrix produces less \noisy" weights at negligible sacri�ce

to mitigation performance [19, 31].
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2.4 Space-Time Processing

As mentioned earlier, the radar under consideration samples data in space, fast-time,

and slow-time and, as such, has available to it three processing dimensions. The three

processing dimensions allow discrimination of targets in angle, range, and Doppler.

Simultaneous processing of samples in all three dimensions represents the most general

class of processors. However, under many circumstances it is su�cient to process only

a subset of samples taken from one or more dimensions. Such processing is referred

to as reduced rank processing and is typically accompanied by a considerable savings

in computation, particularly, when adaptive processing is considered. Therefore, re-

duced rank algorithms have been the focus of much past and current research in radar

signal processing and play a key role in this research as well. This section reviews

some of the common multidimensional processing techniques that exploit partially or

fully the available dimensionality of the sampling space.

2.4.1 SFT Processing

The adaptive formulation of (2.24) applies to multi-dimensional processing as well

as to spatial processing. In the case of space/fast-time (SFT) processing, the input

vector in (2.24) is an SFT snapshot X

(m)

T

(t) as de�ned in (2.9) and depicted in Fig.

2.4, where T is the number of fast-time taps employed. Figure 2.7 illustrates SFT

processing being performed on the returns of a single pulse. Weights are applied to

all element data from T consecutive taps which are then summed together to form an

output. Note that a spatial adaptive processor is realized for T = 1. For M pulses,

M separate SFT �lters are applied to their respective pulse, followed by nonadaptive

Doppler �ltering.

The constraints, C and c, are typically selected so as to satisfy two sets of

conditions at the look direction frequency, �

0

=

D

�

sin(�

0

): namely, unity gain at

the �rst tap and zero gain at successive taps. The latter constraints are known as
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range constraints or null constraints, and their purpose is to prevent target spreading

in successive range cells. This is of particular importance when the transmitted

waveform is to be matched �ltered on return, where any spreading of the LFM coded

waveform ultimately results in reduced gain in the matched �lters. The constraint

quantities are given as follows

C = I

T


 a(�

0

)

H

c = �

T

; (2.28)

where I

T

is the T �T identity matrix, and �

T

=

h

1 0 � � � 0

i

T

is a T � 1 impulse

vector. The resulting set of weights has the desirable property that a target in the

look direction passes through the processor undistorted. A similar construction was

o�ered in [21], where a generalized sidelobe canceler architecture realized both a

unity gain constraint at the center tap and a set of null constraints at the target look

direction for the remaining taps.

Space/fast-time processing has been applied to TSI mitigation as discussed

in [31, 34, 13, 22, 23]. In particular the SFT formulation of (2.24) and (2.28) has

been shown to o�er improved characteristics and performance over reduced rank

SFT techniques, such as the single-reference beam canceler [31, 34]. The operation of

this processor is based on the principle that the direct path jammer can be used to

predict and, thus, cancel the delayed jammer re
ections from the ground (i.e., TSI)
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Figure 2.8: Mainbeam jamming scenario with TSI present.

present in the mainbeam.

Mainbeam jamming occurs when the jammer signal is directly impinging on the

radar's receive beam, obscuring targets that fall in its path [55]. Spatially adaptive

processing works well when target and jammer are adequately separated in angle.

However, as the separation diminishes until target and jammer both appear within

the mainbeam, performance degrades. This degradation is most severe when the

target and jammer are co-aligned and the spatially adaptive processor is unable to

achieve any cancelation at all. The problem of using a spatially adaptive processor

is further compounded in that its beampattern can become very distorted in the

presence of mainbeam jamming. In [31, 33, 32, 37] it was demonstrated that the

coherent multipath or TSI could be exploited to improve signi�cantly mainbeam

jamming interference mitigation performance. In an ideal setting, as depicted by Fig.

2.8, delayed and scaled replicas of the jammer signal arriving at the radar aperture

can be used to reconstruct the jammer signal in the mainbeam and, thus, cancel it.

Conceptually, the function of the SFT processor is to isolate the multipath com-

ponents and align them coherently with the jammer so that they may be subtracted

from the mainbeam where the jammer resides. In reality, the re
ecting ground sur-

face produces a continuum of delayed and scaled replicas of the jammer signal (i.e.,

distributed multipath). The discrete processor can then only approximate the contin-

uous �ltering action performed by the terrain that produces the TSI from the jammer

signal, and, therefore, exact reconstruction and cancelation is not feasible. However,
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performance results on Mountaintop data

3

show remarkable improvement in main-

beam jamming mitigation performance using SFT adaptive processing over spatial

processing, as Fig. 2.9 demonstrates.

2.4.2 MSC Mitigation

While SFT processing is useful for mitigating TSI, STAP is useful for cancelling MSC

[66, 67, 59]. STAP exploits the space-Doppler correlation in the MSC to null it, while

emphasizing the target. Fully adaptive STAP entails applying a set of weights to all

element and pulse data at one range cell and summing the weighted samples to form

an output [17, 7, 66]. As such, the input vector in (2.24) is a slow-time snapshot,

Y(t) = X(t), as de�ned in (2.8) and depicted in Fig. 2.4. A unity gain constraint in

the look direction frequency pair (�

0

;

�

f

0

) is typically selected resulting in the weights

W =

R

�1

X

v

0

v

H

0

R

�1

X

v

0

; (2.29)

where v

0

= v(�

0

;

�

f

0

).

As an alternative, partially adaptive STAP architectures [66, 67, 1, 12, 64] have

become widely popular in that they have demonstrated under most circumstances

3

The Mountaintop experiment is described in Sec. 4.4.
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near equivalent performance to the fully adaptive STAP architecture.

2.4.3 Joint TSI and MSC Mitigation

When TSI and MSC are both present in the radar returns, STAP and SFT processing

are each e�ective only for one interference type and not the other. Thus, a joint

cancelation of MSC and TSI must take place in the element, PRI, and fast-time

domain [16]. Figure 2.10 illustrates the �ltering mechanism for a full rank three-

dimensional processor. Weights from all elements and PRIs are applied to a number

of taps and are summed together to form the output. Given N elements, M PRIs,

and T taps, the optimal solution has a computational complexity on the order of

O[(NMT )

3

] and a sample support requirement on the order of O[NMT ]. Thus, both

processing and sample support requirements become prohibitive for even a small

array.

A reduced rank solution proposed in [31, 36], the factored beamspace algorithm

(FBA), computes a TSI processor for each of N orthogonal directions and M pulses,

which are used to remove the TSI from the data returns while preserving the spatial

and temporal dimensionality of the data. The �ltered data is then fed into a second
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stage, a STAP processor, which serves to remove the remaining MSC. Figure 2.11

illustrates the �ltering mechanism of the FBA.

The set of MN weight vectors in the �rst stage are given by,

W

m;n

= R

�1

X

(m)

T

C

H

n

�

C

n

R

�1

X

(m)

T

C

H

n

�

�1

c; (2.30)

where R

X

(m)

T

is the NT � NT \TSI only" covariance matrix of the m

th

PRI (m 2

f0; 1; � � � ;M � 1g), C

n

= I

T


a

�

n

N

�

H

is the constraint matrix associated with the n

th

orthogonal direction (n 2 f0; 1; � � � ; N � 1g), and c is the constraint vector de�ned

earlier in (2.28). In estimating the covariance matrix for the TSI �ltering stage, far

range samples containing little or no MSC must be used in order that the TSI �lters

do not attempt spatial suppression of the MSC [31, 36]. Any spatial suppression of

the MSC in the �rst stage will detract from the TSI cancellation power of the TSI

�lters and can also cause severe target cancellation. The spatially preserved data

output of the m

th

PRI from the �rst stage is given by

~

X

(m)

(t) =W

H

m

X

(m)

T

(t); (2.31)

where W

m

=

h

W

m;0

W

m;1

� � � W

m;N�1

i

is a weight matrix comprised of the

set of weight vectors for the m

th

PRI in N orthogonal directions.
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In anticipation of STAP processing at the second stage, it is necessary to mod-

ify the space-Doppler steering vector used with the STAP processor to re
ect the

transformation undergone by the target in the TSI �ltering stage (similar to the

transformation undergone by the spatial steering vector in the two-step nulling algo-

rithm in [43]),

~v(�

0

;

�

f

0

) =

�

b(

�

f

0

)
 1

N

�

�

�

h

W

0

W

1

� � � W

N�1

i

H

a(�

0

)
 �

M

�

; (2.32)

where 1

N

is an N � 1 vector of ones and � denotes the Hadamard product [27]

(i.e., an element-wise matrix product operator). STAP weights for the second stage

are computed with a unity gain look direction constraint using the modi�ed steering

vector,

~

W =

R

�1

~

X

~v

0

~v

H

0

R

�1

~

X

~v

0

; (2.33)

where R

~

X

is the MN �MN covariance matrix of the SST snapshot of the �ltered

data, and ~v

0

= ~v(�

0

;

�

f

0

). The processor output is

z(t) =

~

W

H

~

X(t): (2.34)

2.5 Performance Analysis

In analyzing processor performance it is useful to consider such quanti�able measures

as interference power and target power. Comparing these quantities at the input and

output of the radar processor indicates how well the radar processor is doing its job

of removing interference and enhancing the target. As mentioned earlier, all power

measurements are referenced to the thermal noise in the system, or noise 
oor. For a

given radar system, the noise 
oor is �xed at �

2

n

and is usually expressed in decibels,

N

f

= 10 log

10

(�

2

n

), which for the radar under consideration is 50 dB.
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2.5.1 Mitigation Performance

The signal-to-noise ratio (SNR) is de�ned as

SNR =

E

�

X

H

tgt

X

tgt

	

�

2

n

=

�

2

t

�

2

n

: (2.35)

The input interference-to-noise ratio (INR) is de�ned as

INR =

E

�

X

H

i

X

i

	

�

2

n

=

Tr [R

i

]

�

2

n

; (2.36)

where R

i

is the interference covariance matrix, and Tr denotes the trace function,

which sums the elements on the diagonal of the covariance matrix [29]. The output

interference-to-noise ratio (OINR) is de�ned as

OINR =

E fjz

i

j

2

g

�

2

n

=

W

H

R

i

W

�

2

n

; (2.37)

where z

i

is the output of the processor when only interference is present andW is the

weight vector projected onto the space spanned by the covariance matrix. Cancella-

tion or mitigation performance can be reported in any number of ways. When com-

paring processors, it is most straightforward to compare them on the basis of OINR,

although sometimes the interference rejection ratio, which is the ratio of OINR to

INR, is more revealing. In either case, the processors under consideration must pass

the target with unity gain (i.e., no target cancellation should occur). Otherwise, a

comparison of OINR or interference rejection alone is not meaningful. For a standard

adaptive processor of the form (2.24), a unity gain constraint in the look direction

and Doppler is su�cient to prevent target cancellation. For a more complicated, mul-

tistage processor such as the factored beamspace algorithm, a di�erent normalization

scheme is necessary.

2.5.2 Burnthrough

Sometimes it is convenient to speak of burnthrough in relating the performance of a

conventional processor to that of an adaptive processor. Burnthrough is a technique
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based on averaging that is often employed to boost SNR in the presence of strong

interference through a prolonged dwell period [54]. The concept is that successive

echos from a target integrate coherently, whereas the noise components integrate

incoherently [61]. Let n =

P

M

i=1

n

i

be the integrated noise component and t =

P

M

i=1

t

i

be the integrated target component. The average power of each noise sample, n

i

, is

�

2

n

and that of each target sample, t

i

, is �

2

t

. Assuming that the noise is uncorrelated

from pulse to pulse, the total noise power is given by

P

n

= E fn � n

�

g =

M

X

i=1

E

�

jn

i

j

2

	

= M�

2

n

; (2.38)

and that of the target is

P

t

= E ft � t

�

g =

M

X

i=1

M

X

j=1

E

�

t

i

t

�

j

	

= M

2

�

2

t

: (2.39)

For one pulse the SNR is, S

1

= �

2

t

=�

2

n

, whereas for M pulses it is

S

M

= M�

2

t

=�

2

n

=MS

1

: (2.40)

Expressed in decibels, S

dB

M

� S

dB

1

= 10 log

10

M , or

M = 10

(S

dB

M

�S

dB

1

)=10

: (2.41)

For instance, a boost of 50 dB in SNR (i.e., S

dB

M

� S

dB

1

= 50) requires an increase in

dwell time of M = 100; 000. In practice the dwell time dictated by the conventional

processor places an unrealistic demand on the radar, since it diminishes from the

radar's ability to focus on other targets [61]. Furthermore, a moving radar or target

can limit the e�ectiveness of burnthrough by diminishing the target's integrated power

across pulses. In such cases, the merit of the adaptive processor over the conventional

processor becomes evident from the reported burnthrough time that is necessary to

detect a given target.

27



2.6 Summary

This chapter began by introducing some preliminary concepts in array processing and

radar. A discussion of modern pulsed array radar followed, focusing on available pro-

cessing dimensions and the interference environment in which such a radar operates.

Mathematical models describing the various forms of interference were presented to

motivate speci�c classes of adaptive processing techniques suitable for handling such

interference. In particular, space/fast-time processing was shown to be bene�cial for

TSI and mainbeam jamming mitigation, STAP for monostatic clutter mitigation, and

three-dimensional processing techniques such as the factored beamspace approach for

combined MSC and TSI. The chapter concluded with a framework for evaluating

mitigation performance. Additional information on topics covered here is available in

the general literature. See

� [29, 42] for array processing,

� [61, 48, 54] for topics in radar, and

� [66] for space-time processing.
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CHAPTER 3

Monopulse

Ranging and direction �nding are essential operations for almost any radar system.

Whereas the previous chapter brie
y discussed the concept of ranging, this chapter

focuses on direction �nding. Both surveillance and tracking radars require some

form of direction �nding or angle discrimination capability. In surveillance radars

angle discrimination is employed to map out targets from di�erent angular sectors.

Whereas, in tracking radars angle discrimination is employed to isolate and �x on a

single target for tracking purposes, often to guide a missile.

Direction �nding in surveillance radars, which requires broad spatial coverage,

is typically implemented with a rotating antenna dish that transmits pulses and re-

ceives echos throughout the rotation cycle. The approximate angular location of a

target is indicated by the pointing direction of the antenna mainbeam at the time

of detection. The angular resolution (i.e., minimum angle separation necessary to

resolve two targets) that can be achieved is ultimately bounded by the Rayleigh Cri-

terion, which places the limit at the half power beamwidth of the antenna's di�raction

pattern [53]. As a result, tracking radars, which require high angular resolution and

only narrow angular coverage, must employ alternative techniques, such as beam

switching or conical scanning together with range gating (separation by range), to

overcome these inherent resolution limitations. Beam switching or lobe switching

employs two rapidly switching beampatterns to illuminate a target, and, thereby,

provide slightly di�erent perspectives of the target for angle discrimination [60, 53].



In conical scanning the antenna dish rotates narrowly about boresight illuminating

a narrow cone-like region of the target space [60, 53]. Hence, a target that is o�set

from boresight is modulated by the rotational frequency of the antenna. The modula-

tion amplitude of the echo corresponds to the target's radial distance from boresight

and the phase of the envelope peak indicates the target's angular position about the

cone's rim. The latter technique is particularly useful for three dimensional direction

�nding.

All of the sequential lobing techniques, mentioned thus far, rely on the compar-

ison of sequential pulses and, as a result, su�er degradation due to target scintillation

(i.e., rapid 
uctuations of a target's cross sectional area caused by essentially random

factors) [53, 60]. Early in the history of radar it was recognized that rather than

transmitting multiple pulses sequentially, a single pulse could be transmitted and re-

ceived simultaneously on two slightly displaced apertures to achieve the same e�ect:

namely, the projection of two separate spatial realizations of the target echo on the

antenna element. This technique became known as monopulse since it works with

only one transmitted pulse.

3.1 Monopulse Fundamentals

Assuming that the amplitude of a target's echos from repeated pulse transmissions

remains relatively constant, it is possible to obtain an accurate angle measurement

of the echoing source by comparing the amplitudes of successive echos as they are

received on two slightly o�set beams as shown in Fig. 3.1. In practice, however, echo

strengths change rapidly from one transmission to the next, and, hence, the constant

amplitude assumption is not realistic. The idea behind monopulse is to compare the

amplitudes of two simultaneous projections of an echo (V

0

; V

1

) on two displaced receive

beams, as shown in Fig. 3.2. The echo projects on the receive beams in a manner

that is dependent on its angle of arrival. Thus, amplitude and phase components that
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Figure 3.2: Simultaneous lobing example { monopulse.
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depend on angle of arrival are di�erent for V

0

and V

1

. On the other hand, amplitude

and phase components caused by factors that are external to the radar, such as target

range, target cross-section, and medium losses, appear identically in both V

0

and V

1

.

By considering a ratio of the voltages, the components that appear identically in the

two voltages cancel out, while the angle dependent components are retained,

�

v

= f

�

V

0

V

1

�

: (3.1)

The quantity �

v

, called the error voltage, conveys purely directional information,

and, although it does not convey the information directly in angular form, it can be

converted to angular form via a mapping function. The mapping function, called

a monopulse response curve (MRC), is given in terms of the ratio of the two re-

ceive beampattern functions because the beampattern functions represent the ideal

response of the antenna to targets across angle,

M = f

�

W

0

W

1

�

: (3.2)

If the receive beampattern functions, W

0

and W

1

, are designed properly, then this

mapping is invertible for a given angular region about the boresight angle, and, thus,

given an error voltage reading a corresponding angle can be found. The exact form

of the function f(�) that appears in the error voltage and MRC de�nitions depends

on the monopulse system employed and typically serves to make the error voltage

function real-valued, as will be speci�ed further on.

Monopulse is not restricted to amplitude comparison as discussed in the exam-

ple. The di�erences among various monopulse implementations manifest themselves

primarily in the way in which angle information is conveyed. Since in amplitude

comparison monopulse only amplitude information is considered, the beams must be

o�set in angle as shown on the top left of Fig. 3.3 [38, 53]. Note that phase is dis-

carded in the angle sensor. For the con�guration shown, angle estimation can only

take place within a narrow region about boresight but with higher accuracy than

a�orded by the Rayleigh criterion. The useful monopulse region can be increased
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Figure 3.3: Beampatterns for three types of monopulse.
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by separating the beams farther, but accuracy in turn degrades. In contrast, phase

comparison monopulse utilizes only phase information, and, thus, the beampatterns

have identical shapes and pointing directions, but with mirroring phase functions

[38, 53]. Although the phase functions shown in Fig. 3.3 are continuous in the entire

180

�

range, typically the phase functions wrap around a number of times throughout

this range, permitting angle estimation to take place in only a narrow region about

boresight, but, again, with increased accuracy. Most commonly considered is sum and

di�erence monopulse. In Fig. 3.3 the sum beam (solid-black) is formed by summing

the displaced beams of the amplitude comparison monopulse, whereas the di�erence

beam (dashed-red) is formed by taking their di�erence [53, 60]. Note that the sum

beam peaks at boresight whereas the di�erence beam has a null at boresight.

In the block diagram of Fig. 3.2 the angle sensor stage feeds �rst into an error

voltage conversion stage and then into an angle detection stage. The angle sensor

stage corresponds to taking an error voltage measurement, whereas the angle detec-

tion stage corresponds to mapping the error voltage to an angle measurement via an

MRC. In traditional hardware based monopulse systems an additional intermediate

conversion stage is often necessary because the angle sensor hardware is of one type

and the angle detector hardware of another [53]. For instance, the output of an am-

plitude comparison angle sensor might need to be converted for use with a phase or

sum and di�erence angle detector.

3.2 Monopulse with Sensor Arrays

The monopulse technique utilizes signals from multiple apertures to estimate angle

of arrival in one or two angular planes. Since phased arrays can easily form multiple,

simultaneous apertures, the monopulse technique naturally extends to them. In the

previous discussion the monopulse apparatus consisted of two displaced apertures.

The geometrical misalignment or displacement of the aperture feeds gave rise to
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beampatterns that were o�set in angle or phase, thus allowing two independent spatial

realizations of the target echo to be obtained. With a phased array the number of

independent spatial realizations that can be obtained is the element count, and, thus,

the array might at �rst glance seem redundant for the purpose of monopulse. However,

as will be seen later, the additional spatial degrees of freedom a�orded by the array

can be utilized for spatial nulling of interference sources.

In phased arrays beamforming is typically performed electronically by either

hardware or software. Beamforming at the software level is particularly amenable

to monopulse, because no additional hardware is required for simultaneous beam

formation. Since arbitrary beampatterns can be emulated by the array through the

application of appropriate phase shifts to the incoming signals, any of the commonly

considered monopulse con�gurations in Fig. 3.3 are possible with a phased array,

without modi�cation to the array.

Of particular interest is sum and di�erence monopulse, which is characterized

by a sum pattern that peaks at boresight and a di�erence pattern that has a null

there. It is most straightforward to consider the sum and di�erence beams to be the

sum and di�erence of two orthogonal steering vectors centered about boresight and

separated by a normalized spatial frequency of

1

N

,

a
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: (3.3)

The resulting beampattern responses are shown in Fig. 3.4 (left) and are given by
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By another method, the sum weights are taken to be a steering vector in the look

direction, and the di�erence weights are obtained by phase reversing the latter half

of the components of the steering vector

a

�

= a(�

0

); a

�

= �jt

d

� a(�

0

); (3.6)
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where t

d

=

h

1

1�

N

2

�1

1�

N

2

i

T

.

1

In this type of di�erence processor, the outputs

from one half of the array elements are subtracted from the other half, a construction

similar to the two-horn receiver, where one beam is subtracted from the other [60].

The e�ect of the phase reversal is to place a null in the look direction, thus splitting

the mainlobe in two as illustrated in Fig. 3.4 (center). The sum and di�erence beam

patterns are given by,

W

�

=

1

N

sinN� (� � �

0

)

sin�(� � �

0

)

; W

�

=

2

N

sin

2
N

2

� (� � �

0

)

sin �(� � �

0

)

: (3.7)

Yet another method for obtaining sum and di�erence weights is to take the vector of

sum weights to be a steering vector in the look direction and the vector of di�erence

weights to be the derivative of the steering vector with respect to normalized spatial

frequency

a

�

= a(�

0

); a

�

=

@a(�)

@�

�

�

�

�

�

0

: (3.8)

The sum and di�erence patterns are shown in Fig. 3.4 (right) and are given by

W

�

=

1

N

sinN� (� � �

0

)

sin� (� � �

0

)

; (3.9)

W

�

=

�

2N

(N � 1) sin(N + 1)�(� � �

0

)� (N + 1) sin(N � 1)�(� � �

0

)

sin

2

�(� � �

0

)

:(3.10)

Sum and di�erence processors are denoted by the N � 1 vectors w

�

and w

�

,

respectively. Sum and di�erence outputs are given in terms of the respective proces-

sors,

z

�

(t) = w

H

�

x(t) z

�

(t) = w

H

�

x(t); (3.11)

where x(t) is the N � 1 spatial snapshot

2

at time instant t, as de�ned in (2.7). The

error voltage was de�ned earlier as a function of the ratio of two beam outputs. Since

1

A bold numeral denotes a vector or matrix all of whose elements are that value (i.e., 1

2�3

is a

2� 3 matrix of ones, and 1

2

is a length-two column vector of ones).

2

At present, only a single pulse is considered, and, for notational convenience, the superscript

(m) from x

(m)

(t) denoting pulse index has been dropped.
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Figure 3.5: Conventional monopulse response curve.

both the antenna patterns and the array sensor outputs can be complex-valued the

ratio of beam outputs is in general considered complex. However, for the examples of

sum and di�erence monopulse systems given previously it is evident that only real-

valued ratios, z

�

=z

�

, correspond to a physical target, and, therefore, the imaginary-

part of the ratio should be discarded since it is primarily due to interference. In terms

of the error voltage and MRC de�nitions of (3.1) and (3.2) this corresponds to taking

the real part of the ratio (i.e., f(r) = <(r))

�

v

(t) = <

�

z

�

(t)

z

�

(t)

�

; M(�) = <

�

W

�

(�)

W

�

(�)

�

: (3.12)

It should be noted that for other monopulse system designs where the target in-

formation is contained in the phase component (phase comparison monopulse) or

imaginary component of the voltage ratio, f(r) =

6

(r) or f(r) = =(r) are more ap-

propriate. When working with adaptive processors, a distorted pair of sum and

di�erence beams does not produce a ratio that corresponds to any simple form of

f(r), and in such a case the de�nitions in (3.12) will be used. However, other forms

of f(r), such as the absolute value of the ratio [41], may be employed equally well.

Figure 3.5 illustrates the response for the conventional monopulse processor of

(3.8) to targets ranging in azimuth from �5

�

to 5

�

. Given an error-voltage measure-
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ment, the target azimuth is determined by inverse mapping the error voltage through

the MRC:

^

� =M

�1

(�̂

v

) ; (3.13)

as illustrated in Fig. 3.5. In practice the processor pair w

�

and w

�

are unable to

completely reject interference. The residual interference present in the real component

of the ratio, z

�

=z

�

, causes the error voltage �

v

to deviate from its ideal value as given

by the MRC. The corresponding error in the azimuth angle measurement, �

�

=

^

���,

is illustrated by the dashed lines in Fig. 3.5. Qualitatively, the 
atter the MRC, the

greater the resulting error in azimuth reading for a given deviation of error voltage.

Therefore, it is desirable to have a \well-sloped" curve such as the one shown in Fig.

3.5. Another desirable property of the conventional processor's MRC is that it be

unbiased; that is, the curve passes through the coordinate (�

look

; 0).

3.3 Adaptive Monopulse

In nonadaptive monopulse, a set of �xed sum and di�erence weights is computed

to achieve certain desirable properties, such as low sidelobes, angle sensitivity, ro-

bustness, and good performance in thermal noise. The literature contains numerous

design procedures for arriving at sum and di�erence beams that exhibit various trade-

o�s among the di�erent criteria [50, 3]. For the purpose of the development presented

here, it is su�cient to utilize any of the basic sum and di�erence beams introduced

earlier and shown in Fig. 3.4.

3.3.1 Maximum Likelihood Angle Estimation

The disadvantage of conventional monopulse is that it fails to provide adequate sup-

pression of jamming and other forms of interference. Spatial adaptive monopulse has

been proposed as an e�ective means to counter the problem of sidelobe jamming and,
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to a limited extent, mainbeam jamming [11]. Several di�erent approaches have been

proposed for designing an adaptive pair of sum and di�erence beams, such as the

maximum-likelihood approach in [11], which yields a pair of beams that optimizes a

selected angle estimator discussed below.

For the maximum-likelihood (ML) technique a Gaussian probability density

function (pdf) was assumed for the signal-plus-noise process. When the spatial fre-

quency (�) and signal amplitude (�

t

) are unknown the pdf is

p(xj�

t

a(�) + n) = (�)

�N

jR

x

j

�1

exp

h

(x� �

t

a(�))

H

R

�1

x

(x� �

t

a(�))

i

; (3.14)

where n is a white Gaussian N � 1 noise vector whose components have power �

2

n

,

and jR

x

j is the determinant of the spatial covariance matrix. As shown in [11],

the spatial ML frequency estimate �̂ maximizes the log-likelihood function (i.e.,

argmax

�̂

ln p (xj�

t

a(�̂) + n)) and satis�es

<

�

z

�

(�̂;x)z

�

�

(�̂;x)

jz

�

(�̂;x)j

2

�

= <

�

E [z

�

(�̂;x)z

�

�

(�̂;x)]

Ejz

�

(�̂;x)j

2

�

; (3.15)

where superscript asterisk (*) denotes the complex conjugate and the sum and dif-

ference output functionals, z

�

and z

�

, are de�ned as

z

�

(�;x) = a(�)

H

R

�1

x

x (3.16)

z

�

(�;x) =

@a(�)

H

@�

R

�1

x

x = a

�

(�)

H

R

�1

x

x: (3.17)

When the interference noise is isotropic [29] (e.g., white noise and element spacing is

D = �=2) then (3.15) reduces to the standard monopulse criterion [11]

<

�

z

�

(�̂;x)

z

�

(�̂;x)

�

= 0: (3.18)

The simpli�ed form of the ML criterion in isotropic noise (3.18) suggests that per-

forming monopulse is the \best thing to do" under such conditions. On the other

hand, for nonisotropic noise interference the standard monopulse criterion does not

yield the best angle estimate, but rather (3.15) must be met. Since the general
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solution to (3.15) is nonlinear, computing it can be di�cult. However, by making

certain assumptions and simplifying approximations, Davis et al. [11] were able to

arrive at closed form solutions to the ML estimator. Note that nonisotropic noise and

interference, including barrage noise jammers, MSC, and TSI, prevent conventional

monopulse processing and ML angle estimation from being equivalent. It will be seen

later that in such cases adaptive monopulse processing has performance that is very

similar to ML estimation.

3.3.2 Linearly Constrained Angle Estimation

Rather than directly optimizing an angle estimator as in Eq. (3.15), it is possible

to minimize the interference in the individual sum and di�erence output channels

by employing linearly constrained optimization. The rationale is that when little or

no distortion is introduced into the sum and di�erence mainbeams then the reduced

form of the monopulse criterion (3.18) still applies and the performance of this angle

estimator will approach that of ML. On the other hand, when distortions are present

then the reduced form (3.15) does not apply and a distorted mapping function (i.e.,

MRC) must be employed to compensate for these distortions.

One realization of conventional monopulse (3.3) employed a sum and di�erence

of squinted beams (i.e., angularly displaced beams). Adaptive monopulse may be

realized in a similar manner. Two adaptive beams that have peaks

3

o�set by a

normalized spatial frequency of

1

N

are given as follows,

w

1

= R

�1

x

a

�

�

0

+

1

2N

�

; w

2

= R

�1

x

a

�

�

0

�

1

2N

�

: (3.19)

Adaptive sum and di�erence beams are realized by summing and subtracting the

displaced adaptive beams,

w

�

=

w

1

+w

2

2

= R

�1

x

a

�

; (3.20)

w

�

=

w

1

�w

2

2

= R

�1

x

a

�

; (3.21)

3

When distortions are present then the peaks may drift away from the desired locations.
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Figure 3.6: Monopulse sum and di�erence beams and MRC for sidelobe jamming

with a jammer at 25

�

.

where a

�

and a

�

are those of (3.3). A more general technique for arriving at adaptive

sum and di�erence beams is by applying sum and di�erence unity gain constraints at

the look direction,

w

H

a

�

= 1 w

H

a

�

= 1; (3.22)

which, from (2.24), yields minimum variance (MV) sum and di�erence weights

w

�

=

R

�1

x

a

�

a

H

�

R

�1

x

a

�

w

�

=

R

�1

x

a

�

a

H

�

R

�1

x

a

�

: (3.23)

Note that a di�erence processor can be obtained from the adaptive sum processor in

(3.23) by di�erentiating the numerator and normalizing the resulting weight vector. If

the sum and di�erence processors possess distorted mainbeams then a corresponding

distorted MRC must be employed. A natural choice is to employ the de�nition for

MRC provided earlier in (3.12) (i.e., the ratio of beampatterns). Thus, when no

interference is present then the angle estimates are exact, despite distortions that

may be present in the beampatterns.

Figure 3.6 shows spatially adaptive sum and di�erence beampatterns with a

corresponding monopulse curve for a 60 dB sidelobe jammer at 25

�

. A null at 25

�

can

be discerned in the sum and di�erence beampatterns, but, overall, the beampatterns
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Figure 3.7: Monopulse sum and di�erence beams and MRC for mainbeam jamming

with a jammer at 3

�

.

and MRC resemble those of the conventional processor (see Figures 3.4 and 3.5).

4

The

3 dB beamwidths of the conventional and adaptive processors (indicated by the dotted

lines on the MRC) are the same, indicating that a sidelobe jammer has little or no

e�ect on the MRC. However, as will be seen later, the angle-estimation performance

of the adaptive processor, because of the placement of a null at the jammer location,

improves signi�cantly over that of the conventional processor, because the residual

interference in the adaptive sum and di�erence outputs and, thus, in the error voltage

is diminished.

Figure 3.7 shows spatially adaptive sum and di�erence patterns with a cor-

responding monopulse curve for a 60 dB mainbeam jammer at 3

�

. Distortions in-

troduced by the jammer signal into the sum and di�erence beams are evident, in

particular the common null at 3

�

that manifests itself as a singularity in the MRC.

The distorted beams not only detract from the processor's angle estimation capability

as evidenced by the 
attened MRC, but also from the processor's robustness. The

singularity that splits the sum beam in two is particularly problematic because it can

introduce angle estimation ambiguities within a detection cell. For the moment con-

4

Note that gain in Fig. 3.4 is plotted as signed amplitude whereas gain in Fig. 3.6 is plotted in

decibel magnitude.
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sider both sides of the split sum mainbeam as being contained within the detection

cell.

5

An error voltage that is above �0:024 can be mapped to either 3

�

or a di�erent

angle that is greater than 3

�

, and hence an ambiguity. The problem becomes more

severe when a real jammer is considered. In such a case the singularity may spread,

thus causing the MRC to shoot up on one side and back down on the other side and,

thus, to lose its monotone increasing or decreasing property across the singularity

altogether. The resulting ambiguity is then present between two regions within the

detection cell rather than between a region and a point as in the example { a more

di�cult ambiguity to contend with! Alternatively, if the half phased reversed di�er-

ence beam (3.6) is used in (3.23) then this e�ect is observed for the simulated jammer

used here, as well.

3.4 Angle Estimation Performance

In the previous section a detailed description of the monopulse technique was pre-

sented both in terms of concept and implementation. In this section, a formal method-

ology for assessing monopulse performance is established. Of particular interest is an-

gle estimation performance. One particularly useful performance measure for angle

estimation techniques is the rms (root mean square) of the angle error,

�

�

�

=

q

E fj�

�

j

2

g: (3.24)

For unbiased estimators (i.e., E f�

�

g = 0 [49]) the rms is also the standard deviation

of the angle error (STDAE) [60]. In this thesis the term STDAE is adopted and used

rather loosely to denote the rms de�nition (3.24) even when a biased estimator is

involved.

5

Technically, in establishing a detection cell's boundaries the half power points are considered,

and for this example that would include only the left lobe. However, for illustrative purposes the

right lobe is considered within the detection cell as well.
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3.4.1 Standard Expression for Angle Accuracy in Monopulse

In [60, 2], expressions relating angle estimation performance of a monopulse processor

to SNR and the monopulse slope are discussed. A reasonable approximation to the

STDAE is

�

�

=

1

k

m

p

2S

�

=N

�

p

1 +M

2

(�

t

); (3.25)

where S

�

is the signal power in the sum channel output, N

�

is the noise-plus-

interference power in the di�erence channel output, and k

m

=M

0

(�

0

) is the slope of

the MRC at boresight.

6

A multiplicative correction term for o�-boresight targets is

included to the right of the fraction. This formula justi�es the assertion made earlier

that both cancellation performance and a well sloped MRC are necessary to attain

good angle estimation performance.

Although (3.25) applies to mechanically steered antennas, it can be readily

adapted to phased arrays by substituting a spatial frequency variable � in place

of the angle variable �. Furthermore, substituting for the signal output power

S

�

= kw

�

k

2

�

2

t

and the residual interference-plus-noise power in the di�erence channel

output N

�

=

�

w

H

�

R

x

w

�

�

�

2

n

yields the following expression for the rms of �,

�

�

=

p

w

H

�

R

x

w

�

=kw

�

k

k

m

p

2�

2

t

=�

2

n

p

1 +M

2

(�

t

); (3.26)

where k

m

= M

0

(�

0

) is the slope of the MRC at boresight with respect to spatial

frequency and �

2

t

=�

2

n

is the input SNR.

In order to assess the accuracy of the monopulse formula in predicting angle

estimation performance, a few examples are brought forth. In these examples, the

standard deviation (STD) of the spatial frequency error (i.e.,

p

E f(�̂ � �)

2

g) rather

than STDAE is considered and computed as a function of input SNR for various

processors and interference conditions. In all cases the target is assumed to be on

6

Note that angular quantities here di�er in units from those in [60] in that they are expressed in

degrees rather than beamwidths.
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Figure 3.8: Monopulse formula (MF) using Eq. (3.26) versus Monte Carlo simulation

(MC) for a conventional processor.

boresight. Two methods are considered here for computing rms performance: the

monopulse formula (MF) in (3.26) and Monte Carlo (MC) simulation [49]. The

experimental procedure employed for the latter method is brie
y described in Sec.

4.4.5.

Results for a conventional monopulse processor are shown in Fig. 3.8. The left

hand plot shows results for white noise, whereas the center and right hand plots show

results for the sidelobe and mainbeam jamming examples of the previous section. In

all three cases the analytic MF matches the simulation performance �gures very well.

As the interference conditions get progressively more di�cult { in going from white

noise to sidelobe jamming to mainbeam jamming { the curves shift further to the

right.

In a second set of simulations, the adaptive processors of the previous section are

considered. Figure 3.9 shows the two cases of sidelobe jamming and mainbeam jam-

ming. Once again, for sidelobe jamming the MF accurately depicts angle estimation

performance. However, for mainbeam jamming the MF proves more pessimistic than

the experimental results indicate. In both cases the adaptive processors demonstrate

signi�cant improvement in angle estimation performance over that of the conventional

processor. For the case of sidelobe jamming, the adaptive processor is able to whiten
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Figure 3.9: Monopulse formula versus Monte Carlo simulation for adaptive processors.

the jammer without distorting the mainbeam region and, thus, attain the noise 
oor

performance demonstrated earlier in Fig. 3.8 when only thermal noise was present at

the input.

For the remainder of the thesis angle estimation is computed based on MC

simulation rather than the monopulse formula, because the MF fails to accurately

predict angle estimation performance for an adaptive processor in a mainbeam jam-

ming environment. Furthermore, the MF for arrays provides a measure of direction

�nding performance in sine-space units (i.e., spatial frequency). The STD in sine-

space units is not readily convertible to the STD in the desired angular units, because

of the nonlinear mapping (2.4) entailed. With MC simulation, on the other hand,

the STD is computed from a sampling of angle estimates which are either initially

expressed in degrees or can be converted to degrees via (2.4) prior to computing the

STD.

3.4.2 Maximum Likelihood vs. Minimum Variance

In Sec. 3.3 two angle estimation techniques were discussed. The maximum likelihood

(ML) technique o�ered optimal angle estimation performance because the angle esti-

mator was being optimized directly. The minimum variance technique, on the other
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hand, did not explicitly optimize an angle estimator, but rather minimized the inter-

ference in the individual sum and di�erence outputs and used a nonlinear mapping

function to estimate the best \quiescent" angle estimate given the distorted sum

and di�erence beams. However, since the distorted sum and di�erence beams take

the same form for MV as for ML, it is suspected that MV o�ers at least a good

approximation to ML.

In this section a comparison of the two techniques based on simulated results

is carried forth. The sidelobe and mainbeam jamming parameters remain as be-

fore. The MV technique was implemented as discussed in Sec. 3.3.2 with sum and

di�erence weights given by (3.23). The ML estimator was found by performing an

exhaustive search for the solution of (3.15) in a speci�ed angular region. In order to

make the comparisons fair, the angular region over which the search took place cor-

responded to the angular region used in the analysis of the MV monopulse processor

(i.e., the invertible MRC region within the beamwidth of the MV processor). Unlike

the analysis performed in the previous section pertaining to the monopulse formula,

an angle variable rather than a spatial frequency variable was used; a convention

that is adopted throughout the remainder of the thesis. For both techniques a Monte

Carlo simulation method for an on boresight target was used to arrive at STDAE

performance.

Figure 3.10 illustrates STDAE performance for the ML, MV, and conventional

processors. The curves for ML (solid) and MV (plus-dotted) are evaluated for an

SNR range of 0 to 80 dB. However, note that for MV only the portion of the curve

which corresponds to the detectable SNR range is shown. From Fig. 3.10 the detection

cuto�s appear to be at 20 and 25 dB for sidelobe and mainbeam jamming, respectively.

The curves for MV and ML approximately overlap for both sidelobe and mainbeam

jamming, suggesting that indeed the MV technique may be a good approximation to

the ML technique, if the SNR is high enough. Clearly both ML and MV improve

signi�cantly over the conventional monopulse processor (dashed). When plotted on
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Figure 3.10: Maximum likelihood versus minimum variance and conventional

monopulse techniques for sidelobe and mainbeam jamming.

a log scale, as in Fig. 3.11, an improvement factor of approximately 45 dB can be

observed for both sidelobe and mainbeam jamming.

3.5 Summary

Angle estimation theory covers a wide variety of concepts and techniques. Of par-

ticular interest in radar is the monopulse angle estimation concept described in this

chapter, which can also be found in the general literature [60, 2, 53, 26, 38]. The

chapter presented background material pertaining to the origin of the monopulse

technique, developed some of the theory pertaining to conventional array monopulse,

and �nished with a discussion of spatial adaptive monopulse, presenting examples

that illustrate its strengths and weaknesses. The chapter concluded with a discussion

of angle estimation performance both from a theoretical and experimental point of

view. A comparison of angle estimation performance between a baseline adaptive

monopulse processor and a maximum likelihood technique established spatial adap-

tive monopulse as a strong contender.

In the outcome of the various analyses, mainbeam jamming proved particularly

problematic for spatial adaptive monopulse, where distorted beampatterns detracted
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Figure 3.11: STDAE versus SNR on a log scale.

from angle estimation performance as well as from robustness. The failings of spatial

adaptive monopulse motivate the development of space-time adaptive monopulse in

the next chapter.
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CHAPTER 4

Space-Time Monopulse

As explained and demonstrated in Chapter 3, spatial adaptive monopulse processing

does not work well in a mainbeam jamming environment. However, we see from

[31, 32, 33, 37] and Chapter 2 that space/fast-time (SFT) processing is able to provide

substantial improvement of mainbeam jamming interference cancellation when TSI

is present in the returns. In this chapter we develop a monopulse processor that

employs SFT �ltering to enhance angle estimation in much the same way that SFT

�ltering was employed in Chapter 2 to enhance interference mitigation. The resulting

SFT monopulse processor ultimately proves advantageous over its spatial adaptive

predecessors whenever TSI is present in the returns.

The chapter begins by generalizing the monopulse concept to SFT. Two opti-

mization schemes, which have been successfully applied to spatial monopulse, are

considered for the resulting SFT architecture. Once an architecture and an op-

timization criterion are selected, various design considerations and their tradeo�s

are explored. Speci�cally considered are those intended to overcome the limitations

of spatial distortion discussed earlier with respect to spatial monopulse, and target

spreading discussed in Chapter 2 with respect to SFT �lters. The chapter concludes

with an evaluation of the new SFT monopulse concept on experimental data collected

as part of the DARPA/Navy Mountaintop program [63, 62]. These examples include

a qualitative evaluation of the beampattern response and MRC, and a quantitative

evaluation of angle estimation performance. Various design issues for SFT monopulse



and their tradeo�s are considered as well.

4.1 Extending Monopulse to Space{Fast-Time

Recall, that a monopulse system generates an error voltage signal, �

v

(t), and maps the

error voltage to a corresponding angle measurement using a mapping function called

a monopulse response curve (MRC) denoted byM. For estimating angles in a single

plane (i.e., azimuth or elevation), such as will be done here, a single error voltage

signal and MRC are required [60]. Care must be taken to ensure that the MRC, M,

is invertible, otherwise the angle estimate for a given value of error voltage, �

v

, may be

ambiguous. Extension of spatial monopulse processing to SFT entails reinterpreting

some of the spatial quantities de�ned in Sec. 3.2.

By de�nition, an SFT monopulse system has sum and di�erence �lters that

perform spatial as well as temporal �ltering. The purpose of the temporal �ltering is

to rid the output signal of TSI and possibly mainbeam jamming interference. Sum

and di�erence SFT processors are denoted by the NT � 1 weight vectors W

�

and

W

�

, respectively. Sum and di�erence outputs are given in terms of the respective

processors,

z

�

(t) =W

H

�

X(t) z

�

(t) =W

H

�

X(t); (4.1)

where X(t) is the NT � 1 SFT snapshot at time instant t. The error voltage signal

is, thus, a function of the ratio of SFT �ltered outputs,

�

v

(t) = <

�

z

�

(t)

z

�

(t)

�

: (4.2)

As before, the error voltage conveys purely directional information that must

be converted to angular form via a mapping function. The mapping function or MRC

was de�ned earlier as the ratio of di�erence to sum beampatterns and represented

the \ideal" error voltage response to targets arriving from a particular angular region

about boresight. SFT sum and di�erence processors have beampattern responses that
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are functions of angle and time. In general, the SFT response of a processor is de�ned

as

W(�; �) =W

H

[�

T

(�)
 a(�)] =W(�)

H

a(�); (4.3)

where �

T

(�) =

h

0

1��

1 0

1�T���1

i

T

is a T � 1 vector of zeros with 1 as its �

th

component and W(�) denotes an N � 1 vector comprised of the N weights in W

corresponding to tap � . Since the MRC must map error voltage to angle, it cannot

retain its old de�nition as the ratio ofW

�

andW

�

because the responses now contain

time dependencies.

Typically, in designing an SFT processor the target response is constrained to

have a speci�c gain at a given angle and tap (i.e., time delay). For instance, the

processor given by (2.28) has a unity gain look direction constraint at the �rst tap. It

is anticipated, though not guaranteed, that the response has a peak at tap T

0

where

the gain constraint is applied, particularly if range constraints are present. If the

response is indeed strongest at T

0

, then it is reasonable to de�ne the MRC as the

ratio of spatial responses there

M(�) = <

�

W

�

(�; T

0

)

W

�

(�; T

0

)

�

; (4.4)

where W(�; T

0

) is the response of an SFT processor at tap T

0

.

An alternative way to arrive at the expression for the MRC is to consider the

de�nition of error-voltage in (4.2):

�

v

(t) = <

�

z

�

(t)

z

�

(t)

�

= <

�

W

H

�

X(t)

W

H

�

X(t)

�

: (4.5)

If the SFT snapshot, X(t), contains a target, then the response of the sum processor

is anticipated to be strongest when the target appears at tap T

0

. A target, V

tgt

, at

T

0

is given by

V

tgt

= �

T

(T

0

)
 a(�): (4.6)
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Evaluated for this target, the error voltage is

�

v

(V

tgt

) = <

�

W

H

�

V

tgt

W

H

�

V

tgt

�

= <

�

W

H

�

[�

T

(T

0

)
 a(�)]

W

H

�

[�

T

(T

0

)
 a(�)]

�

= <

�

W

�

(�; T

0

)

W

�

(�; T

0

)

�

; (4.7)

which is the same expression as for the MRC given in (4.4).

4.2 Selecting a Minimization Criteria

Now that the monopulse concept has been generalized to SFT, an optimization criteria

needs to be considered. In one approach, a maximum likelihood angle estimator based

on SFT sum and di�erence beams would be developed in a similar manner to the

spatial case in [11]. However, the estimator in [11] was noted in [10] to have certain

disadvantages that would be of concern in an SFT implementation. In particular,

there is a lack of control over the SFT responses of the sum and di�erence processors.

Extending the analysis in [11] to SFT would not permit the required degree of control

over the temporal behavior of the new SFT sum and di�erence processors. The

consequence is potential target spreading and, hence, reduced range-cell resolution.

As a result, targets that are close to each other in range overlap at the output,

rendering angle estimation di�cult or impossible. The results are similar to those of

spatial monopulse when multiple targets overlap in the mainbeam [26].

1

A spatial only

MRC utilized together with SFT �lters cannot tolerate overlapping targets nor can it

tolerate target spreading. Furthermore, as mentioned in Chapter 2, radars typically

transmit a coded waveform (e.g., LFM) that is match �ltered at the output. An SFT

�lter that permits target spreading warps the LFM signal and, hence, drastically

reduces the gain of the matched �lter.

A second and more robust option is to employ linearly constrained optimization

[29]. In contrast to a maximum likelihood (ML) approach, the use of linear constraints

would allow the designer to exercise a great deal of control over both the spatial and

1

In [68] a set of three Butler beams is used to resolve the angles of arrival of two sources in the

mainbeam.
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temporal behaviors of the SFT sum and di�erence processors, thus assuring robustness

by providing a means to avoid target spreading and other distorting e�ects. The

disadvantage of the linearly constrained approach is that it cannot be used directly

to minimize an angle estimation performance criteria as is the case with the maximum

likelihood approach. At best it is able to minimize the residual interference in the

respective sum and di�erence outputs. Nonetheless, as was demonstrated in Chapter

3, a spatial monopulse processor was able to achieve near ML performance.

To summarize, ideally we would like to be able to

� directly minimize angle estimation error, and

� exercise control over the spatio/temporal response of the processor so that the

e�ect of target spreading and overlapping targets is reduced.

To achieve both requires a highly nonlinear solution that is not of practical consider-

ation. Maximum likelihood estimation has been shown to o�er direct minimization

capability for the spatial case. However, the solutions were nonlinear and required

simplifying approximations for implementation, which would only present more di�-

culties when working in the SFT domain. The linearly constrained optimization ap-

proach, on the other hand, provides a simple linear solution that allows for a controlled

response. However, because angle estimation is not the criteria being optimized, a

small but acceptable price may be paid in terms of angle estimation performance.

4.3 Designing Sum and Di�erence Filters

Having reinterpreted the MRC for SFT and selected an optimization criteria, the

next step is to design the sum and di�erence processors, W

�

and W

�

. The desired

monopulse processor should have the target response characteristics shown in Fig. 4.1

and yet provide adequate suppression of main-beam jamming with minimal target

spreading. The SFT processor considered is that of (2.24) with a set of constraints

chosen to achieve these criteria.
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Figure 4.1: Constraint speci�cations for the SFT adaptive monopulse processor.

Of the T taps in the processor, the T

th

0

tap captures the target as shown in Fig.

4.1. To prevent target spreading in the look direction, range constraints are applied

at the look direction (�

0

) for all taps except T

0

(shown as the center white line in Fig.

4.1). In general, however, it is not su�cient to apply one set of range constraints at

the look direction. Since the detected target may have been detected anywhere within

the mainbeam, it is necessary to provide additional range constraints about the look

direction at spatial frequencies, �

0

� 0:5=N (shown as additional white lines in Fig.

4.1). They do not ensure zero gain throughout the angular extent of the mainbeam

but rather serve as \anchors" to keep the gain low in that region, and, as such, they

serve to sharpen the beam along the range direction. The speci�ed range constraints

are implemented via a constraint matrix and vector:

C

0

=

2

4

I

T

0

0

T

0

�T�T

0

0

T�T

0

�1�T

0

+1

I

T�T

0

�1

3

5




2

6

6

6

4

a(�

0

�

1

2N

)

H

a(�

0

)

H

a(�

0

+

1

2N

)

H

3

7

7

7

5

(4.8)

c

0

= 0

3(T�1)�1

: (4.9)

Spatial response constraints (SRC) are de�ned for an expected target at tap

T

0

. Typically, a unity gain constraint (2.28) is used, but, for the case of monopulse

processing in mainbeam jamming, a more rigid set of constraints is necessary to ensure

a reliable and robust MRC. This requirement is met most stringently by forcing the
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processor to take the form of a conventional processor at tap T

0

, in which case the

spatial responses of the processors are identical to one of those shown in Fig. 3.4.

This condition can be met by applying the constraint matrix and vector:

C

1

=

h

0

1�T

0

1 0

1�T�T

0

�1

i


 I

N

; (4.10)

c

1

=

8

>

<

>

:

a

�

; if sum processor;

a

�

; if di�erence processor:

(4.11)

The sum and di�erence steering vectors a

�

and a

�

can be one of those given in equa-

tions (3.3), (3.6), (3.8), or some other valid sum and di�erence pair. An alternative

and simpler method for implementing the SRC is to apply a large degree of diagonal

loading to the portion of the covariance matrix R

X

corresponding to T

0

,

R

X

! R

X

+ �

2

d

�

�

T

(T

0

) � �

T

(T

0

)

T

�


 I

N

; (4.12)

along with a unity gain constraint at T

0

,

C

alt

1

=

8

>

<

>

:

[�

T

(T

0

)
 a

�

]

H

if sum processor;

[�

T

(T

0

)
 a

�

]

H

if di�erence processor;

(4.13)

c

alt

1

= 1: (4.14)

Both approaches for implementing the SRC result in identical processors.

The range constraints are grouped with the spatial response constraints giving

the constraint matrix and vector

C =

2

4

C

0

C

1

3

5

; c =

2

4

c

0

c

1

3

5

: (4.15)

The sum and di�erence processors are speci�ed in terms of the design parameter

T

0

. The signi�cance of T

0

is in the type of prediction that the resulting processor

performs. In the example of Sec. 2.4.1 and in the derivations of [34, 31], a forward

prediction �lter is implemented by specifying that the target appear in the �rst tap
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(i.e., T

0

= 0). On the other hand, if the target is constrained to appear in the

�nal tap (i.e., T

0

= T � 1), a backward prediction �lter results. In Sec. 4.4 a tap-

centered con�guration (i.e., T

0

= T=2) corresponding to a combination of forward and

backward prediction is selected because the components of the jamming signals in the

sidelobes arrive both before and after the corresponding mainbeam components.

In summary, extending monopulse processing into SFT entails the following

key steps:

� Rede�ning the MRC in terms of the SFT responses of the sum and di�erence

channels.

� Adopting an optimization criteria and solving for the sum and di�erence channel

processors.

� De�ning desired response characteristics for the sum and di�erence channels.

After achieving these goals, angle estimation proceeds in the same way as described

in Sec. 3.2 (i.e., using Eq. 3.13).

4.4 Angle Estimation Results with Experimental

Data

In this section performance of SFT monopulse is demonstrated for a variety of exper-

imental Mountaintop (MT) datasets collected as part of the DARPA Mountaintop

program [63, 62]. The radar employed [8] is a bistatic array of 14 elements spaced 1/3

meters apart. In gathering data the array transmitted bursts of 16 pulses spaced 3.2

milliseconds apart (i.e., T

r

= 0:0032) on a 435 MHz carrier and sampled the incoming

baseband signals at 1 MHz. Two-hundred kHz Gaussian bandpass �lters centered at

the carrier frequency at the front end of each element's receiver �lter the incoming

data returns prior to sampling. The radar is situated on top of a mountain to simulate
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airborne as well as ground based environments. All subsequent results are normalized

to the radar's noise 
oor of 50 dB.

Initially, four existing methods for generating sum and di�erence beams with

their corresponding spatial adaptive implementations are considered:

1. (DER) Adaptive distorted sum and derivative di�erence beams.

2. (CAS) Adaptive distorted sum and derivative di�erence beams with zero-bias

constraint (see Castella [10]).

3. (GAB) Cosine/sine illumination sum and di�erence beams (see Gabriel [20],

Lin and Kretschmer fengling,lingrep1).

4. (HPR) Adaptive distorted sum and half-phased-reversed di�erence beams.

The �rst method, DER, is based on the unity gain constraint processor pair (3.23)

with sum and di�erence steering vectors given by (3.8). The second method, CAS,

adds a constraint to the di�erence processor to force a null at boresight, thus, ensuring

an unbiased monopulse curve. The third method, GAB, employs sinusoidal tapering

to generate sum and di�erence steering vectors in (3.23). The fourth method, HPR,

is based on the unity gain constraint processor pair (3.23) with sum and di�erence

steering vectors given by (3.6).

Ultimately, only one of the above methods is considered for evaluation and

analysis of SFT monopulse. However, prior to selecting a method, an analysis and

comparison of the four must take place. In all of the analyses, an evaluation of

mitigation performance, beampattern response, resulting MRC, and angle estimation

performance is included. The �rst to be eliminated is CAS, on the basis that it yields

identical angle estimation performance to DER, as demonstrated through simulations

and an analytical proof in Appendix A. The SFT extensions of DER, GAB, and HPR

are then introduced and compared to their spatial counterparts. Processor GAB is

then eliminated on the basis of inferior angle estimation performance to DER and
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HPR. Since DER and HPR perform similarly only the standard adaptive processor,

DER, and its SFT extension are considered further.

Once DER has been selected as the method of choice for generating sum and

di�erence beams, evaluation of various aspects of SFT monopulse proceeds. Full spa-

tial constraints at T

0

are introduced into the SFT extension of DER and the resulting

sacri�ce in performance for improved robustness and beamwidth is investigated. Re-

laxation of the full spatial constraints is then performed via variable diagonal load-

ing on T

0

to determine the amount of performance that could be regained without

adversely a�ecting robustness. Similarly, a relaxation method employing reduced

constraints is also evaluated.

Till now, all performance results were based on stationary TSI data coming from

the mmit004v1 Mountaintop dataset. Results based on the nonstationary TSI dataset

rio043v1 are presented and a comparison drawn between the spatial processor and its

SFT extension. A summary of results based on other Mountaintop datasets containing

various forms of jamming and TSI { stationary, nonstationary, and indirect path

jamming { are tabulated for the spatial and SFT implementations. Finally, results

are given that demonstrate the merit of the SFT monopulse processor under ordinary

jamming conditions.

Remaining to be addressed are certain concerns that arise with SFT monopulse

and spatial adaptive monopulse under conditions of mainbeam jamming. In order

to alleviate some of these concerns, a beamwidth analysis and an explanation of

transmit-receive beampatterns are included.

4.4.1 Spatial Processing Results

When no taps are utilized then the comparison between the four processors is straight

forward. Adaptive weights for each of the four processors are computed for moun-

taintop dataset mmit004v1. The look direction corresponds to the jammer present at

32

�

east of boresight, thus making this a mainbeam jamming problem.
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Figure 4.2: Sum (�) Outputs.

Filtered outputs from a conventional processor and the four adaptive processors

are shown in �gure 4.2. Note that the � component of the DER, CAS, and HPR

processors are the same, and, therefore, only one output is shown for all three. This,

however, is not the case for the � component of the processors and corresponding

outputs, so indeed we are talking about di�erent processors. The output interference

to noise ratio (OINR) is indicated above each plot. A 70 dB synthetic target has been

injected into the TSI input data in range bin 500. As can be seen from the �ltered

outputs, no target cancellation occurs. This is not by coincidence, but rather by

design, and is intended to enable the OINR to be used as a direct measure of mitiga-

tion performance. By that token, the DER, CAS, and HPR processors demonstrate

improved mitigation performance over the tapered processor (GAB).

The sum and di�erence beampatterns of the DER, CAS, and GAB processors

are shown in Fig. 4.3.

2

A dashed line indicates the boresight angle (look direction)

and coinciding jammer location. As the experimental results demonstrate, the spatial

processors have highly distorted sum and di�erence beampatterns. The high sidelobes

seen in the � beampatterns are typical of mainbeam jamming. Although such high

sidelobes would be unacceptable in an actual radar processor implementation, it is

2

HPR has been omitted from this comparison because of its similarity to DER.
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shown later that the high sidelobes appear much lower when both the transmit and

receive beampatterns are taken into consideration. Therefore, for the time being,

the focus is on the mainbeam which is positioned about the look direction. In a

conventional processor the mainbeam is symmetric about the look direction. However,

for any of the adaptive processors the mainbeam appears skewed, bulging to the left

of the look direction. This is particularly problematic in the � beampattern of GAB.

The sinusoid tapering originally intended to widen the mainbeam in exchange for

reduced sidelobes has apparently caused a degradation in both the sidelobes and the

mainbeam of the resulting � beampattern.

The bottom row of Fig. 4.3 has the corresponding � beampatterns of the three

processors. Once again, the discussion of high sidelobes is deferred to a later point,

and the focus is on the split mainbeam. In the case of the DER processor, the

split in the mainbeam occurs slightly o�set from the look direction, which ultimately

results in a biased monopulse response curve. The CAS processor, however, solves

this problem by placing a null constraint at the look direction, thus resulting in a

zero-bias MRC. Finally, the � beampattern in the GAB processor appears not much

di�erent then its corresponding � beampattern, with the null in the � pattern being

very near the null of the � beampattern. As will be shown next, the MRC of the

GAB processor su�ers degradation as a result of the highly skewed beampatterns.

Monopulse response curves for the three processors are shown in Fig. 4.4. The

MRCs for the DER and CAS processors are very similar. The solid line indicates the

region where the MRC is usable (i.e., invertible). The dashed line indicates the look

azimuth. In the tapered processor it is noted that the usable portion of the MRC

curve intersects the look azimuth close to its right edge. This highly biased MRC is

in e�ect only useful for estimating angles to the left of the look azimuth, and hence,

for this particular mainbeam jamming scenario the GAB processor is not very useful.

Monopulse performance curves are shown in Fig. 4.5. Monopulse performance

is measured in terms of the standard deviation of angle error (STDAE) as de�ned
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earlier in (3.24). As the SNR is increased, STDAE performance is expected to improve

as demonstrated by the asymptotically down sloping curves.

From Fig. 4.5 it can be seen that the DER and CAS processors perform iden-

tically. The beampatterns and MRCs of the di�erence processors in Fig. 4.3 and 4.4,

however, clearly showed that the two processors are di�erent. It turns out that not

only is the statistical performance of both processors identical, but also the determin-

istic angle estimates are themselves identical. An analytical proof for the equivalence

of the two processors in terms of angle estimation is provided in Appendix A. Since

DER and CAS are in fact equivalent whether a spatial or SFT implementation is

opted, the CAS processor is not considered further.

The GAB processor performs rather poorly in terms of angle estimation with

respect to the other adaptive processors in the mainbeam jamming environment. In

the next subsection, where the extension of the spatial adaptive processors to SFT is

considered, GAB is shown to su�er even further degradation and is considered only

brie
y because of its poor performance in the mainbeam jamming environment.

4.4.2 Space{Fast-Time Processing Results

Comparison of Processors

Here the DER, HPR, and GAB spatial processors are extended to SFT using the

method introduced in Sec. 4.1. The extension employs 20 taps, a unity gain constraint

at T

0

= 0, and a single set of range constraints at the look direction. A similar set

of results to those in Sec. 4.4.1, contrasting the di�erent processors is included here

in order to determine a suitable candidate among DER, GAB, and HPR for further

performance analysis of the SFT monopulse technique. Filtered outputs from the

three processor are provided in Fig. 4.6. Note that once again the � component of

DER and HPR are identical, and, thus, only one plot is provided for both. The SFT

DER and HPR processors demonstrate a 9 dB improvement in performance over their

spatial counterparts, and the GAB processor demonstrates a 5 dB improvement over
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its spatial counterpart. This time a 50 dB synthetic target has been injected into the

mmit004v1 data, which shows up at the output of each of the three processors.

In contrast to the spatial processors, the SFT processors have two-dimensional

beampatterns as shown in Fig. 4.7. The left and right-hand side plots correspond

to the DER and GAB processors, respectively (HPR is omitted again because of its

similarity to DER). The two-dimensional � and � beampatterns are shown for each

processor. Spatial distortions at T

0

are present in the SFT beampatterns, as they were

in the spatial case. In further analysis, it is shown that the overall spatial response

and robustness of the SFT processor can be improved at the expense of OINR and

angle estimation performance by applying spatial response constraints (SRCs).

Target spreading in range does not occur in the spatial case because a spatial

processor is memoryless. In SFT, however, target spreading can be quite problematic.

Even though range constraints have been applied at the look direction, both the DER

and GAB di�erence processors su�er target leakage in the �rst few taps. Imposing a

single set of range constraints is apparently not su�cient to ensure the required low

gain throughout the split mainbeam of the di�erence processors at successive taps. In

contrast to the � processors, the � processors are not as sensitive to target spreading,

and a single set of range constraints is apparently su�cient for this particular tap

con�guration.
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Figure 4.7: Sum and Di�erence Beampatterns.
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Figure 4.8: SFT Monopulse Response Curves.

As was noted earlier, the spatial GAB processor su�ers mainbeam response

degradation. The extension of the GAB processor to SFT makes this problem even

more severe. In the sum processor a high gain artifact just to the right of the look

direction overwhelms the mainbeam.

Monopulse response curves for the SFT DER and GAB processors are shown

in Fig. 4.8. These monopulse curves appear very similar to those encountered in the

spatial only case. The merit of SFT monopulse over spatial monopulse is demon-

strated by comparing the angle estimation performance of the SFT processors, shown

in Fig. 4.9, to that of the spatial processors shown in Fig. 4.5. Once again the DER

and HPR processor demonstrate similar angle estimation performance whereas the

GAB processor lags behind.

The DER and HPR processors have been demonstrated to be clearly superior

to the GAB processor in terms of the various performance criteria adopted here. As

a result, the GAB processor is not considered further. HPR is also not considered

further because of its similarity to DER. A more in depth analysis of SFT monopulse

using the DER method of generating di�erence beams follows.
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Fully Constrained SFT Processor

In the preceding analysis an SFT processor with unity gain constraint at the �rst tap

and a single set of range constraints at the look direction proved problematic in terms

of target spreading. It also su�ered from spatial distortion in conditions of mainbeam

jamming as did the single tap processor. It was stated earlier that employing SFT

processing with spatial response constraints and multiple sets of range constraints

reduces that distortion. In this section a full spatial constraint tap-centered DER

processor with three sets of range constraints about the look direction is investigated.

The resulting sacri�ce in performance is then justi�ed in terms of improved robustness

(e.g., fewer distortions and consistent behavior under varied conditions).

Filtered outputs for a 20 tap and a 50 tap processor are shown in Fig. 4.10.

The resulting loss in OINR performance is apparent when comparing the 20 tap fully

constrained processor to the 20 tap unity gain processor in Fig. 4.6. It takes an ad-

ditional 30 taps (i.e., 50 taps) to regain the 23 dB OINR performance of the 20 tap

unity gain processor. As will be shown, not only do the additional constraints take

a toll on OINR performance but also on angle estimation performance. However, as

shown in Fig. 4.11, the resulting spatial beampattern at T

0

is indeed that of a con-

ventional processor and, hence, far improved over the distorted spatial beampatterns
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Figure 4.10: Outputs for 20 and 50 tap SFT Sum (�) Processors.

of the unity gain processors. Additionally, target spreading is eliminated throughout

the extent of the mainbeam as demonstrated by the deep nulls cutting across range.

Problems still exist with areas lying outside of the mainbeam region, but, as indi-

cated earlier, the focus at this point is on the mainbeam, whereas issues regarding

the outlying regions are treated later.

The angle estimation performance of the 20 and 50 tap SFT processors is

shown in Fig. 4.12. Included for reference are the conventional processor and spatial

adaptive processor. As mentioned earlier, the fully constrained SFT processor su�ers

mitigation performance degradation in exchange for increased robustness. This is

true for angle estimation performance as well, where it is noted that the 20-tap fully

constrained processor performs similarly to the unity gain spatial processor. All

things being equal, the 20-tap processor should improve on the unity gain processor,

as it does in Fig. 4.13. In the comparison of Fig. 4.13 the SFT processors have

been constrained with a unity gain constraint at the �rst tap rather than a full

set of SRCs at the center tap, and three sets of range constraints about the look

direction for successive taps. The second comparison is thus a \fairer" comparison

since the spatial beam patterns of the SFT processors are allowed to be distorted and,

thus, possess narrower mainbeams much like those of the spatial adaptive processor.

An explanation of why smaller beamwidths result in seemingly improved STDAE
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Figure 4.11: Sum and Di�erence Beampatterns for fully constrained SFT processors.
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performance is o�ered in Sec. 4.4.5. The main point to keep in mind is that SFT

�ltering is able to enhance STDAE performance and/or robustness. If robustness (i.e.,

beamwidth integrity and consistent performance) is desired then a fully constrained

SFT processor can o�er it at the expense of STDAE performance.

In comparing angle-estimation performance, it is sometimes convenient to speak

of burnthrough as discussed in Sec. 2.5.2. For instance, given a desired STDAE of

0:5

�

, the conventional processor requires 91 dB of SNR, whereas the 50-tap fully

constrained SFT processor requires only 41 dB of SNR { an improvement of 50 dB!

Burnthrough time is thus reduced by a factor of 100,000. That is, the conventional

processor would have to transmit 100,000 pulses to achieve the same STDAE as the

50-tap processor does with 1 pulse. With respect to the spatial adaptive processor,

the reduction in burnthrough time is approximately 5.

Tap Analysis

Figure 4.14 �xes the SNR at 50 dB and varies the number of taps from 1 to 50 for fully

constrained and partially constrained SFT processors. The fully constrained SFT

processor utilizes a full set of SRCs whereas the partially constrained SFT processor

utilizes a single unity gain constraint. Both employ a tap-centered con�guration with
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three sets of range constraints about the look direction. STDAE is plotted versus

the number of taps in the processor. The solid and dash-dot line curves indicate

performance for the fully constrained and partially constrained SFT processors, re-

spectively. A horizontal dashed line indicates the performance of the 1-tap unity gain

adaptive processor. The plot suggests that a 22 tap fully constrained SFT processor is

necessary to achieve the same level of angle estimation performance as the 1 tap unity

gain processor. As noted before, this is a necessary cost incurred for the increase in

beamwidth and robustness a�orded by the fully constrained SFT processor. On the

other hand, any number of taps in the partially constrained SFT processor improves

on the spatial adaptive processor.

The SFT curves demonstrate that, whether or not robustness is desired, em-

ploying additional taps ultimately results in improved angle estimation performance,

whereas con�nement to a single tap lacks potential for improvement. In practice,

however, computational resources and availability of training data limit the potential

for improvement with the SFT processors as well, by limiting the number of taps

that can be employed and, thus, achievable performance. With a shortage of com-

putational power and training data, the fully constrained implementation described

in Sec. 4.3 might not be a viable option because of the large number of taps that
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is necessary. However, if robustness is still desired, the method of relaxing spatial

constraints can be employed as described in the following section.

4.4.3 Relaxing Spatial Constraints

In the previous analysis, a fully constrained SFT adaptive processor was implemented.

The term \fully constrained" implied three sets of range constraints about the look

direction and a set of N spatial constraints at T

0

. In practice, the set of N spatial

constraints at T

0

was implemented by a diagonal loading technique described in Sec.

4.3, whereby a large amount of diagonal loading (e.g., 100 dB) was applied to the

portion of the covariance matrix corresponding to T

0

. This was in addition to any

diagonal loading that was applied to the entire covariance matrix as a whole. The

e�ect of applying diagonal loading at T

0

is to prevent adaptivity from taking place at

that tap, and, therefore, the weights and corresponding response at that tap will be

those of the conventional processor.

The following is an investigation of the e�ect of varying the amount of diago-

nal loading at T

0

. Figure 4.15 shows the two-dimensional � beampatterns of three

processors with T

0

diagonal loading levels of 10 dB, 20 dB and 30 dB, respectively.

Slices taken at T

0

are included underneath the two-dimensional beampatterns. The

progression illustrates that as more diagonal loading is applied, the closer the spatial

response resembles that of the conventional � processor. Conversely, the less diag-

onal loading is applied, the more \relaxed" the spatial constraints become, and the

more distorted the spatial response. Similarly, the more diagonal loading at T

0

that

is applied to the di�erence processor, the closer the spatial response resembles that

of the conventional � processor.

There may be a number of reasons why it is bene�cial to relax the spatial con-

straints at T

0

. In terms of the beampattern, the application of full spatial constraints

results in a sharp transition between the response at T

0

and neighboring taps. Such

arti�cial boundaries suggest that full spatial constraints are themselves rather arti�-
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cial. Ine�ciency in the form of a large number of constraints may possibly contribute

to loss of performance. Illustrated in Fig. 4.16 is the relationship between diagonal

loading at T

0

and the resulting OINR and STDAE performance. As expected, an

increase in diagonal loading at T

0

degrades OINR performance. However, STDAE

performance is shown to improve up to a certain point, after which it begins to de-

grade again. The curve indicates that approximately 22 dB of diagonal loading at T

0

is optimal for angle estimation. This result suggests that relaxation of the constraints

through the method of variable diagonal loading has some merit.

Other forms of relaxation are possible, however, not all prove feasible. One

method of particular interest that is easily implemented is applying a reduced number

of spatial constraints about the look direction at T

0

. The resulting form of constraints

is more stringent than the unity gain constraint, but more relaxed than the full set of

constraints. In Fig. 4.17 the application of 3, 5 and 7 spatial constraints is illustrated

for the DER � processor. The constraints are spaced at intervals of

1

2N

in units of

normalized spatial frequency. As expected, the resulting beampatterns demonstrate

improvement in the spatial response at T

0

as more spatial constraints are added.

Figure 4.18, however, indicates that the presence of three or more spatial constraints

does not o�er bene�t in terms of STDAE performance.

Based on the analysis presented here, diagonal loading seems to be a more
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natural choice for spatial constraint relaxation. However, there is nothing precluding

the use of a combination of the diagonal loading and reduced constraint techniques

for further improvement in performance.

4.4.4 Other Results

Nonstationary TSI

Up to now, the dataset mmit004v1 was used to evaluate SFT monopulse. This partic-

ular dataset contained TSI from a ground based jammer. Another dataset, rio043v1,

contains TSI from an airborne jammer. Whether the radar is airborne or the jammer,

it is expected that the resulting TSI will experience a Doppler shift and, therefore,

can not be considered stationary [30, 28]. Provided here are a few results that verify

the feasibility of the SFT monopulse processor in a nonstationary TSI and mainbeam

jamming environment. In Fig. 4.19 mainbeam jamming �lter outputs are shown for

the conventional processor, spatial adaptive processor, and fully constrained SFT pro-

cessors with 20 and 50 taps, respectively. A 50 dB synthetic target injected into the

input data does not experience target cancellation, and, therefore, OINR can be used

to represent mitigation performance. From the results in this �gure and successive

�gures, it is apparent that SFT processing is even more critical for this particular

dataset (containing nonstationary TSI) than for the mmit004v1 dataset containing

stationary TSI. In Fig. 4.20 STDAE versus SNR curves are shown for the four proces-

sors. For nonstationary data there is a more pronounced di�erence between employing

1 tap and multiple taps. In comparing Fig. 4.20 for rio043v1 to that of Fig. 4.12 for

mmit004v1, it becomes apparent that angle estimation performance is hampered by

the nonstationarity of the TSI and mainbeam jamming. This is primarily a conse-

quence of the reduced mitigation capability in the airborne interference environment.

Recall that because reduced mitigation results in excessive interference in the sum and

di�erence outputs and corresponding error voltage readings, angle estimates become

corrupt.
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However, by no means should the results for nonstationary TSI presented here

be considered a complete treatment of the topic. When considering nonstationary

TSI, issues such as training interval selection and sample support have to be consid-

ered as well, topics that are beyond the scope of this thesis.

Summary from Mountaintop Datasets

Results from a number of MT datasets demonstrate that the fully constrained SFT

adaptive monopulse processor does not always perform better then the spatial adap-

tive processor. Table 4.1 includes STDAE results for a variety of mountaintop

datasets.

The 3 dB beamwidth (�

bw

) and OINR for the sum processor are provided as

additional performance measures. The processors under consideration in Table 4.1 are

a conventional processor (nonadaptive) and two fully constrained SFT processors with

20 and 50 taps, respectively. Note that with only one tap, the full set of constraints

in a spatial processor occupy all available degrees of freedom and yield a nonadaptive

processor. In Table 4.2 the processors are a unity gain spatial adaptive processor and

two partially constrained SFT processors with 20 and 50 taps, respectively. For the

most part Table 4.1 represents fully constrained or \robust" processing, whereas Table

4.2 represents partially constrained or \highly adaptive" processing. The majority of

case entries represent mainbeam jamming scenarios. The exceptions are the entries

for datasets mmit109v1 and mmit112v1 which both lack a direct path jammer signal

[63].

In comparing OINR results in the respective tables it is clear that the SFT

processors o�er improvement over the corresponding spatial (1 tap) processors. For

the most part this is true of STDAE performance as well. However, for some datasets

neither of the fully constrained SFT processors in Table 4.1, particularly the 20-tap

processor, o�er an improvement in STDAE performance over the spatial adaptive

processor in Table 4.2, even though OINR performance is improved. The answer
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Table 4.1: Performance results for other MT datasets (SNR = 50dB) using the full

set of constraints.

a

Contains TSI without a direct path jammer.

b

Contains nonstationary TSI.

Conventional 20 Tap Processor 50 Tap Processor

Name �

jam

�

bw

OINR �

�

�

�

bw

OINR �

�

�

�

bw

OINR �

�

�

mmit004v1 32.0 8.9 73.5 4.50 8.9 29.5 0.48 8.9 22.6 0.18

mmit013v1 66.2 20.6 66.3 7.73 20.6 31.7 1.35 20.6 23.1 0.43

mmit043v1 32.0 8.9 63.1 4.52 8.9 25.9 0.29 8.9 22.9 0.19

mmit044v1 32.0 8.9 63.4 4.52 8.9 25.8 0.30 8.9 23.0 0.21

mmit045v1 32.0 8.9 60.8 4.03 8.9 23.1 0.20 8.9 20.4 0.13

mmit048v1 32.0 8.9 63.4 4.58 8.9 25.9 0.30 8.9 23.2 0.21

mmit109v1

a

32.0 8.9 46.5 2.83 8.9 30.3 0.55 8.9 21.5 0.15

mmit112v1

a

32.0 8.9 46.3 2.84 8.9 29.5 0.48 8.9 21.5 0.16

rio042v1

b

8.7 7.7 59.2 3.97 7.7 32.7 0.46 7.7 28.2 0.26

rio043v1

b

10.7 7.7 57.0 3.52 7.7 30.3 0.35 7.7 26.9 0.24

Table 4.2: Performance results for other MT datasets (SNR = 50dB) using partial

constraints.

a

Contains TSI without a direct path jammer.

b

Contains nonstationary TSI.

1 Tap Processor 20 Tap Processor 50 Tap Processor

Name �

jam

�

bw

OINR �

�

�

�

bw

OINR �

�

�

�

bw

OINR �

�

�

mmit004v1 32.0 4.9 32.1 0.42 4.8 25.6 0.36 4.7 17.7 0.06

mmit013v1 66.2 16.7 35.6 1.47 15.5 27.4 1.05 16.7 17.3 0.32

mmit043v1 32.0 4.7 26.2 0.15 4.6 22.3 0.12 4.8 18.8 0.06

mmit044v1 32.0 4.9 26.7 0.18 4.8 22.2 0.11 4.9 18.9 0.07

mmit045v1 32.0 5.0 24.3 0.13 4.8 19.1 0.09 4.8 16.0 0.04

mmit048v1 32.0 4.8 26.2 0.15 4.8 22.1 0.11 4.9 18.4 0.05

mmit109v1

a

32.0 4.7 26.3 0.29 4.8 23.2 0.19 4.9 17.6 0.08

mmit112v1

a

32.0 4.7 26.2 0.28 4.8 23.0 0.18 4.9 16.7 0.07

rio042v1

b

8.7 6.8 39.5 0.92 5.4 31.9 0.49 4.9 27.0 0.17

rio043v1

b

10.7 6.5 37.2 1.03 5.8 29.6 0.78 5.6 26.0 0.84
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to this apparent discrepancy lies in the increased beamwidths a�orded by the full

constraint con�guration. To motivate this hypothesis, consider the processors for

datasets rio042v1 and rio043v1, where the beamwidths are closer in value. For

those datasets the fully constrained SFT processors o�er signi�cant improvement in

STDAE performance over the unity gain spatial adaptive processor. An explanation

of why the increased beamwidth makes the SFT processors appear at a disadvantage

with respect to the spatial adaptive processor, even though OINR performance is

clearly superior, is o�ered in Sec. 4.4.5.

At this point it is important to consider the consistent behavior, and, thus,

robustness, of the fully constrained SFT processors under di�erent interference con-

ditions as represented by the di�erent datasets. Whereas the spatial adaptive proces-

sor exhibits large variations in performance from one dataset to the next, the 50-tap

fully constrained SFT processor is particularly stable. The exception is for dataset

mmit013v1 where the location of the jammer, namely at �

0

= 66:2

�

, results in reduced

angular resolution and, hence, a loss of STDAE performance. In general, as the look

direction is steered away from boresight, angular degradation results as demonstrated

in the next subsection. For the partially constrained SFT processors STDAE is for

the most part improved over those of the fully adaptive processors, again primar-

ily because of the e�ect of reduced beamwidths (since OINR doesn't seem to su�er

as much). However, robustness is clearly lost. This is most apparent from dataset

rio043v1 where the 50 tap partially constrained SFT processor fails to improve and,

in fact, degrades over the 20 tap partially constrained SFT processor.

Nonmainbeam Jamming

It is interesting to note what happens when the radar gradually steers away from the

jammer, and how SFT adaptive monopulse processing performs relative to spatial

adaptive monopulse. The e�ect is shown in Fig. 4.21. Included for reference is Fig.

4.22 showing OINR and beamwidth performance for varying steer direction. The
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Figure 4.21: STDAE versus processor look direction (SNR = 50dB).
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20-tap processor improves on the spatial adaptive processor everywhere except in the

20

�

� 30

�

region, which is heavy in TSI and jamming energy. The 50-tap processor,

on the other hand, is equipped with su�cient TSI cancellation capability to o�er

improvement throughout the angular region shown.

In selecting an optimization criteria in Sec. 4.2 the argument for output power

minimization rather than direct angle estimation optimization was that under most

circumstances output power minimization is su�cient for near optimum angle esti-

mation. Comparing Fig. 4.21 to Fig. 4.22 supports our assertion that STDAE per-

formance is indeed consistent with OINR performance. In other words, where OINR

performance is good, so is STDAE performance and vice versa.

Figure 4.22 shows the variation of processor beamwidth with steering direc-

tion. As the monopulse sum beam is steered away from boresight (0

�

), the �

beamwidth increases for all processors; a consequence of diminishing angular reso-

lution in the array at angles away from boresight. As will be explained in Sec. 4.4.5,

increased beamwidths cause degradation to STDAE performance as measured here.

Thus, STDAE performance degrades near the edges, whereas OINR performance re-

mains constant. Of particular interest is that for most of the angular spectrum, the

beamwidth of the spatial adaptive processor is roughly equivalent to that of the SFT

processors, while in regions heavy in TSI and mainbeam jamming its beamwidth is

diminished. Likewise, in regions of reduced angular resolution (i.e., at the edges), the

spatial adaptive processor su�ers from excessively large beamwidth. The SFT pro-

cessors, on the other hand, exhibit consistent beamwidths because that is the nature

of the constraints with which they are equipped.

4.4.5 Beamwidth Analysis

In comparing di�erent processors it was noted that the angular extent of the main-

beam varies with processor con�guration. For example, in Fig. 4.23 the conventional

processor has a beamwidth of 8:9

�

, whereas the spatial adaptive processor has a
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Figure 4.23: Mainbeams of a conventional and spatial adaptive processor with look

direction marked in red (dashed line).

beamwidth of 4:85

�

. As discussed next, results used in comparing processors of di�er-

ent beamwidths may be biased, thus, favoring one processor over the other. Consider

the 50 tap fully constrained SFT processor in Table 4.1 and the spatial adaptive pro-

cessor in Table 4.2 both for dataset entry mmit043v1. The SFT processor resulted in

an OINR of 22.9 dB and an STDAE of 0:19

�

, whereas the spatial processor resulted

in an OINR of 26.2 dB and an STDAE of 0:15

�

. Thus, we have an improvement

in OINR performance but a degradation in STDAE performance. Noting the dif-

ferent beamwidths of the two processors leads us to suspect that the discrepancy in

performance lies in the variant beamwidths.

Experimentally, STDAE is determined through Monte Carlo simulations [49]

with targets injected randomly across range and angle within the mainbeam and the

corresponding angle errors averaged over range

�̂

�

�

(�) =

s

X

t

j

^

�(�; t)� �j

2

; (4.16)

where � is an angle within the mainbeam and t is a fast-time index. When the angle

dependency is not desired, a worst case STDAE is reported:

�̂

�

�

= max

�

�

�̂

�

�

(�)

	

: (4.17)
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Figure 4.24: STDAE performance for SNR=50dB as a function of true target angle.

Look direction marked in red (dashed line).

Typically, the worst case occurs on the mainbeam edges where angle estimates are

not as accurate. This e�ect is illustrated in Fig. 4.24.

In Fig. 4.24 STDAE is plotted for the spatial adaptive and conventional pro-

cessors whose beampatterns were shown in Fig. 4.23. The target SNR was �xed at

50 dB and the angles at which targets are injected was varied across the mainbeam

of the respective processors. It is evident that the resulting angle estimates become

progressively worse for targets that are injected farther away from the look direction

(i.e., 32

�

). This suggests that wide beamwidth processors may be at a disadvantage

over narrow beamwidth processors for this method of measuring STDAE.

One way to eliminate such biasing is through beamwidth compensation. That

is, rather than injecting targets throughout the mainbeam of each processor and

then taking the worst case STDAE reading, inject targets only in an interval of the

mainbeam shared by all processors. For example, consider Fig. 4.25 illustrating how

the 3 dB points of the mainbeam shift as the diagonal loading at T

0

is gradually

increased from 0dB to 70 dB (diagonal loading at T

0

was discussed in the context of

constraint relaxation in Sec. 4.4.3). The blue shaded area corresponds to the region

of the mainbeam. Notice that for 0 dB diagonal loading the beam is biased to the

left, at 25 dB the mainbeam is biased to the right, and beyond 50 dB it is balanced.
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0

revisited { with and without

beamwidth compensation.

Also note the gradual decrease of beamwidth as the amount of diagonal loading is

decreased. When worst case STDAE results are reported across the entire mainbeam,

the solid-line curve of Fig. 4.26 results. However, when worst case STDAE results

are reported across a �xed interval about the look direction, as indicated by the cross

hatched region in Fig. 4.25, the dashed-line curve of Fig. 4.26 results. Considering

the uncompensated curve, roughly 22 dB of diagonal loading at T

0

results in peak

performance, representing a dramatic improvement in performance over 0 dB diagonal

loading. When considering the compensated curve, roughly 27 dB of diagonal loading

results in peak performance, but the improvement is hardly signi�cant. Clearly the

dramatic results attained without the use of beamwidth compensation prove far less

dramatic with compensation.

Despite the argument presented for beamwidth compensation, it was opted

to not utilize it in this thesis. Results obtained from beamwidth compensation are

not fully representative of the individual processors, because they do not test the

processors in their full range of operation. Since we are interested in robustness, a

comparison that does not apply to the full range of operation does not accurately

re
ect the sacri�ce in performance incurred for the added robustness. Furthermore,
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the use of beamwidth compensation can confuse the reader to think that the results

presented are inconsistent. For instance, STDAE results for one particular proces-

sor might vary from one comparison to the next depending on what portion of its

beamwidth is being utilized, which, in turn, depends on the processors under evalu-

ation.

An alternative and simpler method for measuring angle estimation performance

is to normalize the STDAE results to the processor's beamwidth, �

bw

,

��

�

�

(�) =

v

u

u

t

X

t

�

�

�

�

�

^

�(�; t)� �

�

bw

�

�

�

�

�

2

: (4.18)

Unlike beamwidth compensation, this measure of STDAE performance can test the

processor in its full range of operation, and, yet, avoid being biased towards larger

beamwidth processors. In fact, in the literature it is common for angles to be ex-

pressed in terms of beamwidths units rather than degrees [60, 20, 39, 41, 40].

Since the results in this thesis are largely experimental and the focus is on both

angle estimation performance and robustness, neither beamwidth compensation nor

the normalized STDAE measure are employed extensively. When comparing a spa-

tial adaptive processor to SFT processors, instead of using beamwidth compensation

or normalized STDAE, it was opted to include results for the fully constrained as

well as the partially constrained SFT processor. The merit of SFT processing was

demonstrated by comparing the spatially adaptive processor to partially constrained

SFT processors, since both have similar beamwidths. On the other hand, comparing

the spatially adaptive processor to fully constrained SFT processors provides a sense

of the tradeo� involved between STDAE performance and robustness.

4.4.6 Transmit-Receive Patterns

Figure 4.27 illustrates the e�ect of a directional transmission beampattern such as

the one found in the Mountaintop radar. The adapted receiver pattern is that of

a unity gain spatial adaptive processor. For a processor performing detection, the
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Figure 4.27: Adapted receive beampattern, transmit beampattern, and two-way re-

ceive beampattern. Look direction marked in red (dashed line).

high sidelobes pose a serious false alarm threat if additional targets are present in

the sidelobes [33, 37]. For a monopulse processor, targets entering through the high

sidelobes corrupt the monopulse output and, thus, angle estimates. Ordinarily, such

a poor response would render a processor unacceptable. However, the severity of the

problem is somewhat muted if the directional characteristics of the radar transmitter

are taken into account. The directional transmission beampattern illustrated in the

center of Fig. 4.27 is taken to be that of a 35 dB Chebyshev tapered steering vector in

a look direction of 32

�

, such as was used for much of the Mountaintop data [33, 37].

As demonstrated by the two-way response in the right of Fig. 4.27, what used

to be unacceptably high sidelobes are now at least 20 dB below the mainbeam. De-

spite the reduced sidelobes, however, certain vulnerabilities to false alarms still exist,

particularly within the vicinity of the mainbeam. Reducing the high gain artifacts

near the mainbeam requires a narrower transmission beam. For a �xed number of

transmit/receive elements this has to come at the expense of higher sidelobes. Fur-

thermore, the transmit pattern is typically �xed in the radar and is not subject to

variation.

The two-dimensional two-way sum and di�erence patterns for a fully con-

strained 20 tap processor are shown in Fig. 4.28. Once again, what used to be
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Figure 4.28: Two-way sum and di�erence beampatterns for 20 tap processor.

unacceptable sidelobes in Figure 4.11 are now far more acceptable. Certain gain ar-

tifacts near the mainbeam and successive taps, however, still remain as they did in

the spatial case. Since the spatial constraints prevent the artifacts from showing up

at T

0

they appear in the successive taps.

An issue that arises when employing a two-way beampattern is how to de�ne

the processor beamwidth. For identical transmit and receive beampatterns, a 6 dB

beamwidth is most appropriate [61]. That is, the 3 dB beamwidth of the one-way

pattern is equal to the 6 dB beamwidth of the two-way pattern, and, therefore, it is

not necessary to indicate the type of beampattern to which the speci�ed beamwidth

applies. However, when the transmit and receive beampatterns di�er, as in Fig. 4.27,

the 3 dB beamwidth of the one-way or receive beampattern (left) is not equal to the

6 dB beamwidth of the two-way beampattern (right). In such cases, it is simplest to

apply the 3 dB beamwidth de�nition to both the one-way and two-way beampatterns.

When the receive beamwidth is narrower than the transmit beamwidth, as it typically

is, then at least the two-way beamwidth is only slightly narrower than the one-way

beamwidth.
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4.5 Conclusions

The main innovation introduced in this chapter is a method by which a monopulse

processor is combined with an adaptive space/fast-time processor to provide a precise

angle tracking capability in the presence of TSI and mainbeam jamming. Key features

of the new processor are a tap-centered con�guration, extended range constraints, and

spatial response constraints. Range constraints play a key role when the transmitted

waveform is spread in time (e.g., LFM) and pulse compression follows TSI processing.

Range constraints in the look direction are intended to prevent spreading throughout

the mainbeam, but the application of spatial constraints at T

0

imposes such a burden

on the processor that spreading within the mainbeam becomes a problem. Therefore,

additional range constraints about the look direction become necessary.

Previous work has shown no clear advantage to using di�erent tap con�gura-

tions. Here, however, for monopulse it has been demonstrated that a combination of

forward and backward prediction is essential when spatial response constraints are

applied. As demonstrated through simulation results, spatial response constraints

play a key role in maintaining consistent performance and low distortion in the sum

and di�erence responses; particularly, in a mainbeam jamming scenario. Constraint

relaxation via variable diagonal loading at the constraint tap was shown to o�er slight

advantage in terms of mitigation and angle estimation performance with little or no

sacri�ce in the sum and di�erence responses.

The majority of simulation results in this chapter were con�ned to two Moun-

taintop datasets containing stationary and nonstationary TSI. In either case, the SFT

processor proved meritorious over the spatial adaptive processor. A limited set of sim-

ulation results for a more comprehensive set of datasets demonstrated the robustness

of the proposed algorithm under di�erent TSI conditions, including when a direct

path jammer is lacking. The merit of the SFT processor was also demonstrated for

the nonmainbeam jamming scenario.

The chapter concluded by addressing two concerns that arose in presenting
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mainbeam jamming results. In particular, the high sidelobes in the beampattern

responses were shown to be far less problematic when considering the directional

transmit/receive characteristics of the Mountaintop radar. The favorable bias in angle

estimation performance for processors possessing narrower beamwidths was shown to

be an artifact of the method employed for measuring STDAE. Other methods of

measuring STDAE were proposed but ultimately rejected on the grounds that they

fail to consider the tradeo� between angle estimation performance and robustness.
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CHAPTER 5

Combined TSI and MSC Processing

Monostatic clutter (MSC) is commonly encountered together with TSI and jamming.

Since MSC is correlated in space and slow-time, the SFT processing used for TSI

mitigation is ine�ective for MSC. One approach suggested in [31, 36], the factored

beamspace algorithm (FBA), cascades a set of TSI �lters with an MSC �lter. The

resulting cascade architecture works by initially cleansing the data of TSI using SFT

processing, and then removing the remaining MSC with SST processing. However,

certain shortcomings of the FBA discussed below motivate us to search for alter-

natives. In this chapter we introduce a reduced rank algorithm, Beam Augmented

STAP (BASTAP), that overcomes some of the shortcomings of the FBA. BASTAP

is shown to o�er improved performance under stationary conditions and equivalent

performance under nonstationary conditions.

The chapter begins by pointing out the shortcomings of the FBA and moti-

vating the need for an alternative. A discussion of STAP and some of its strengths

ensues. The BASTAP �ltering mechanism and optimization criteria are then pre-

sented. Various architectural interpretations are provided to supplement a further

understanding of BASTAP. An extended BASTAP architecture is then presented for

use with nonstationary TSI. Finally, extensive evaluations of BASTAP, FBA, and

STAP are performed with combined experimental TSI and synthetic MSC data.
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Figure 5.1: Modulation e�ect in the Factored Beamspace Algorithm.

5.1 Motivation for BASTAP

Two factors motivate us in the pursuit of an alternative architecture to FBA. The

�rst goal is to take advantage of the bene�ts o�ered by STAP in terms of MSC and

jamming cancellation. Avoiding the shortcomings of the FBA is the second goal.

As discussed next, both of these criteria have an ultimate impact on the proposed

architecture.

5.1.1 Shortcomings of the FBA

While the FBA is computationally more viable than the fully adaptive joint processor

(i.e., one that adapts on all element and pulse data from T consecutive taps), it has

some serious drawbacks. First of all, the FBA requires MSC-free training data [36].

Although such data can typically be obtained from far range cells, in a nonstationary

TSI environment the TSI in far range cells may di�er signi�cantly from that in near

range cells. The second and more severe problem is that of MSC modulation [51].

Modulation occurs as the spatial response of a TSI processor degrades dramatically

when the look direction is on or near the jammer and TSI. Since in the factored

approach there are N orthogonal beams, one or more of them will always point
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Figure 5.2: Mainbeam jamming with incoherent multipath and coherent multipath.

towards the jammer and TSI region. The distortions in the response of those beams

in turn cause the MSC passing through the TSI processor to spread across angle { an

e�ect referred to as modulation. In Fig. 5.1, the e�ect of modulation is demonstrated.

Shown on the left is the power spectrum of data containing synthetic MSC. Shown

on the right is the distorted MSC after TSI mitigation. The jammer and TSI in

the original Mountaintop dataset mmit004v1 occupy a region from approximately 0.2

to 0.6 of the sin(�) spectrum, which is where the resulting MSC artifacts appear

strongest. Note that without the use of diagonal loading the artifacts appear even

more pronounced than shown in the �gure. The SST processor of the second stage

of the FBA is not able to cope well with the modulated form of the MSC, and a

signi�cant loss of performance is incurred.
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5.1.2 STAP in a Combined TSI, MSC, and Jamming Envi-

ronment

Experimental results on Mountaintop data show that STAP does not perform as

poorly as expected in the combined interference environments. This result is not

altogether surprising since the major sources of interference are MSC and jamming,

which can be removed through STAP. Furthermore, TSI can be partially mitigated

with spatial processing. It is, however, surprising that STAP is still able to perform

relatively well in the presence of mainbeam jamming. A target that lies in the direct

path of a jammer is completely obscured, provided su�cient jamming power is avail-

able. Additionally, no degree of spatial nulling will help since any spatial nulling of

the jammer consequently nulls the target. The reason that some amount of spatial

suppression of mainbeam jamming is attained lies in the speci�cs of the Mountaintop

radar. The Mountaintop radar utilizes 200 kHz bandpass �lters at the front end of its

receivers to reduce matched �lter sidelobes [8]. Thus, TSI returns arriving from a few

closely spaced directions e�ectively have the same delay, resulting in spatial correla-

tion of the TSI with itself and the jammer signal. Once there is spatial correlation

between the jammer and surrounding TSI, signi�cant cancellation of the jamming

can take place without ever using fast-time taps [32, 33, 37]. To demonstrate, con-

sider a 30 dB jammer located at 0

�

and a 15 dB replica (multipath) located at 10

�

.

For a white jammer signal, the jammer signal and its multipath replica are coherent

when they have the same delay and incoherent otherwise. In one scenario, the replica

is incoherent with the mainbeam jamming signal, and, therefore, it is not expected

that the multipath will aid in suppressing it. In a second scenario, the replica is

coherent with the mainbeam jamming signal. Figure 5.2 shows beampatterns and

�ltered outputs for the incoherent and coherent cases. As expected, no cancelation of

the mainbeam jammer takes place when the multipath component is incoherent with

the mainbeam jammer. On the other hand, if the multipath component is given the

same delay as the mainbeam jamming signal and, thus, made coherent, then 15 dB
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of suppression results. However, suppression of the mainbeam jammer comes at the

expense of a distorted beampattern.

5.2 Beam Augmented STAP

Based on the argument for STAP, the resulting architecture has as its principal com-

ponent a fully adaptive STAP processor. The spatial processing performed by the

STAP processor can then accomplish signi�cant spatial nulling of the mainbeam jam-

mer. On the other hand, fast-time processing, expected to provide only marginal

improvement in cancelation performance, is auxiliary and, therefore, need not be al-

lotted the same degree of 
exibility as the STAP processor. Consequently, for the

proposed approach, fast-time taps are applied only to a single beam formed in space

and slow-time, rather than to individual pulses and elements.

5.2.1 Filter Mechanism

Such a �lter mechanism is illustrated in Fig. 5.3. In this architecture,MN weights are

applied to all elements and pulses in the �rst tap (i.e., STAP weights). Additionally,

an auxiliary beam in angle and Doppler is formed and weights applied to T � 1

fast-time taps of that beam. The auxiliary beam is de�ned as

A(t)

T

= F(�

1

;

�

f

1

)

H

h

X(t� 1) X(t� 2) � � � X(t� T + 1)

i

; (5.1)

where F = v(�

1

;

�

f

1

) is a conventional, nonadaptive spatial/Doppler beamformer. In

Eq. (2.21) which relates output to input, the input vector, Y(t), is de�ned as

Y(t) =

2

4

X(t)

A(t)

3

5

: (5.2)

With a �lter architecture at hand, an adaptation scheme is required. It is most

straight forward to optimize all the weights simultaneously using Eq. (2.24) and apply
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a set of constraints to achieve the desired response characteristics. The unity gain

constraint speci�ed by constraint matrix and vector

C = v(�

0

;

�

f

0

)

H

; c = 1; (5.3)

o�ers the most straight forward BASTAP design. The constraint guarantees that a

target at the look direction and look Doppler passes through the �lter with unity gain.

Although no range constraints have been applied to prevent target spreading, it will

become evident from the experimental results that none are needed. Estimation of the

covariance matrix,

�

R

Y

, can be accomplished using the SMI technique as discussed

in Chapter 2. Unlike the FBA which requires an \MSC free" training dataset for

training of the TSI �lters in the �rst stage in addition to the combined TSI and

MSC training dataset, BASTAP only requires the combined training dataset. Since

both sets of STAP weights and auxiliary fast-time weights are optimized together,

STAP performance can only be improved upon, and there is no concern that fast-time

processing comes at the expense of STAP processing.

5.2.2 Block Diagram of BASTAP Architecture

The approach presented, beam-augmented STAP (BASTAP), employs both raw data

in the main channel and beamformed data in the auxiliary channel. The structure

has adaptive weights in the upper branch and adaptive tapped delay lines in the lower

branches, as shown in Fig. 5.4.

The BASTAP architecture in Fig. 5.4 provides additional insight into the al-

gorithm at hand and helps us identify where potential improvement to other archi-

tectures could be introduced. For instance, the single reference beam canceler in

[46, 18, 31] presently utilizes a conventional beamformer in the upper branch and an

adaptive tapped delay reference beam in the lower branch. As with BASTAP, it could

be made to utilize adaptive spatial weights in the upper branch as well. The result-

ing architecture could then be viewed as a special case of BASTAP (i.e., one pulse
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Figure 5.5: Alternative interpretation to BASTAP.

BASTAP). We see that BASTAP is a reduced rank space/fast-time/slow-time pro-

cessor, in other words it operates in a three-dimensional subspace. The nature of the

3D subspace becomes even more evident with a beamspace-Doppler interpretation.

5.2.3 Alternative Interpretation

A di�erent interpretation of BASTAP utilizing beamspace data is illustrated in Fig.

5.5a. A two-dimensional DFT is applied across all elements and PRIs at each range

cell. Weights (shown in black) are then applied across all spatial and Doppler bins

from the �rst tap, i.e., the STAP portion of the processor. Fast-time weights are then

applied across T � 1 taps from a single selected beam indicated by the gray shaded

cubes.
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5.3 Extended-BASTAP

The BASTAP architecture is not restricted to a single beam. Multiple beams can

be used to enhance performance in the presence of nonstationary TSI, such as that

present in airborne radar data. In fact, such TSI has correlation not only in fast-time

but also in slow-time. Thus, it is necessary to apply beams across all Doppler bins

from a single spatial frequency bin, as depicted in Fig. 5.5b. This structure is similar

in concept to the application of Doppler compensation channels [19, 30, 28]. For

multiple beams, Y(t) is de�ned as above in Eq. (5.2), with the beam transformation

F having multiple spatial/Doppler �lters:

F =

h

v(�

1

;

�

f

1

) v(�

2

;

�

f

2

) � � � v(�

N

b

;

�

f

N

b

)

i

: (5.4)

Once we have introduced a multiple reference beam extension of BASTAP,

it is easy to talk about any number of other architectures that utilize some odd

combination of beams and taps. Referring to Fig. 5.5b it is not di�cult to imagine

beams in the beamspace-Doppler domain having thinned weights, multiple beams

that span di�erent lengths, or perhaps beams centered about the 0

th

tap as we had

with the tap-centered con�guration in Sec. 4.4. Since the choices are seemingly endless

this thesis considers only a selected number of extended BASTAP architectures.

5.4 Computational Issues

In order to provide a basis for the fair comparison of the three competing algorithms

BASTAP, STAP and FBA, it is necessary to consider the computational and training

requirements of each. Since all of the algorithms at hand in one way or another employ

Eq. (2.24) for computing weights, the predominant source of computations are the

estimation and inversion of the covariance matrix. Both estimation and inversion

of a D � D covariance matrix require on the order of D

3

computations. For STAP

only a single covariance matrix of dimension MN needs to be considered. For FBA
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a set of M covariance matrices of dimension NT (one for each pulse) need to be

considered for the �rst stage and one covariance matrix of dimension MN for the

second stage. For BASTAP one covariance matrix of dimension MN + N

b

(T � 1)

needs to be considered, where N

b

is the number of reference beams.

For STAP and FBA the associated covariances and their inverses are suitable

for any processor look direction and Doppler. However, for BASTAP, since reference

beam placement may depend on the assumed Doppler, it may be necessary to com-

pute multiple processors utilizing di�erent covariance matrices in order to cover the

desired Doppler spectrum. For instance, BASTAP with a single reference beam only

works well for targets possessing the same Doppler as the reference beam. Therefore,

for complete Doppler coverage it is necessary to consider M covariance matrices. Ex-

tended BASTAP, on the other hand, already employs M reference beams distributed

evenly across Doppler, and, therefore, only one covariance matrix need be considered.

With the ever increasing computational power of modern computing devices to

meet the computational demands of radar processors, sample support or the avail-

ability of su�cient training samples for estimating the covariance matrix is often the

limiting and, thus, critical factor in selecting a processor size. As a general rule of

thumb, estimating a covariance matrix of dimension D �D requires the availability

of 2D snapshots at successive time instants. An estimate employing 2D training

snapshots results in a 3dB SINR performance loss with respect to the true covariance

matrix in (2.24) [52, 4]. For STAP and BASTAP arriving at the sample support

is straightforward, whereas with FBA it is slightly more complicated because of the

more complicated structure involved. Furthermore, FBA requires an additional \clut-

ter free" training set (i.e., containing only TSI).

Another useful and related performance parameter to consider is the blind

interval [31]. The blind interval is de�ned here as the temporal extent of the �lter,

or, in other words, the number of snapshots necessary to �ll up the extent of the

�lter [31]. Table 5.1 summarizes the computational requirements, degree of sample
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Table 5.1: Computational and sample support requirements.

NAME BASTAP FBA STAP

Computational Complexity [MN +N

b

(T � 1)]

3

M(NT )

3

+(MN)

3

(MN)

3

Sample Support MN +N

b

(T � 1) MN +NT MN

Blind Interval Length T T 1

support necessary for training, and blind intervals of the respective processors.

5.5 Simulation Results for BASTAP

Performance results for BASTAP were obtained for MT dataset mmit004v1 containing

a direct path jammer at 32

�

and stationary TSI, and for MT dataset hot6067v1

containing a direct path jammer at �2

�

and nonstationary TSI. In both instances

datasets were combined with 40 dB of synthetic MSC and injected with a 50 dB

synthetic target with a �100Hz Doppler shift. The three processors considered were

BASTAP, fully adaptive STAP, and FBA.

The synthetic MSC was generated by the Mountain Top Matlab Toolbox

1

simit

tool which utilizes a simple sandpaper monostatic clutter model. The power spectrum

of the synthetic clutter was already shown in the MSC modulation example on the

left hand side of Fig. 5.1. The clutter ridge has a slope of approximately 1, corre-

sponding to the maximum allowable unambiguous platform velocity with no platform

misalignment. When evaluating STAP and BASTAP, the synthetic MSC is injected

throughout range. When evaluating FBA the MSC is only injected in the �rst 1000

samples, leaving su�cient MSC-free training samples for the TSI pre-processor.

Initially, the interference suppression performance of BASTAP is evaluated

and compared to that of FBA and STAP for the case of stationarity TSI. Then,

a qualitative evaluation and comparison of beampattern responses of the various

1

The Mountain Top Matlab Toolbox is presently available on the Yaron Seliktar's web site at

www.ece.gatech.edu/users/yaron
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processors is given. A similar analysis of interference suppression and beampattern

responses is provided for nonstationary TSI. Both sidelobe and mainbeam jamming

are considered in all of the analyses. Additionally, a number of analyses that focus

on a particular parameter and its e�ect on the performance of BASTAP, STAP,

and FBA are included. Variation of look Doppler in a mainbeam jamming scenario

demonstrates consistency and also provides additional insights into the workings of

the various algorithms. Variation of MSC clutter power combined with the TSI and

jamming provides additional insights into the workings of the various algorithms and

places a perspective on how to view the other results presented. An analysis of

reference beam placement then follows. As in the previous chapter, summary results

for other MT datasets are tabulated.

5.5.1 Computational Issues

A fair comparison between BASTAP and FBA entails matching up the di�erent

performance parameters as best as possible. However, as can be inferred from Table

5.1, matching up one parameter results in a mismatch of another. Since it is, therefore,

impossible to attain a completely fair comparison, the following analyses focus on the

number of adaptive weights in BASTAP and the number of adaptive weights per

pulse in the �rst stage of FBA. Tables 5.2 and 5.3 detail the performance parameters

that apply to the comparitive analyses that follow. In order to facilitate reading the

table entries, the computational requirement and sample support �gures are expressed

relative to those of STAP. Since BASTAP and extended BASTAP are employed under

stationary and nonstationary conditions, respectively, it is necessary to consider the

processor con�gurations separately for the di�erent environments. Table 5.2 applies

to processing under stationary conditions, whereas Table 5.3 applies to processing

under nonstationary conditions.
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Table 5.2: Computational complexity and sample support requirements for stationary

con�guration.

NAME BASTAP FBA STAP

Computational Complexity 3x 32.5x x

Sample Support 1.44y 2.25y y

Blind Interval 100 25 1

Table 5.3: Computational complexity and sample support requirements for nonsta-

tionary con�guration.

NAME BASTAP FBA STAP

Computational Complexity 20x 251x x

Sample Support 2.7y 3.5y y

Blind Interval 25 40 1
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5.5.2 Stationary TSI

In analyzing the three processors on stationary TSI data, the assumed target direction

and Doppler were 0

�

and �100Hz for sidelobe jamming and 32

�

and �100Hz for

mainbeam jamming. BASTAP was con�gured with a 99-tap reference beam (T =

100) pointed at the jammer (i.e., 32

o

) for sidelobe jamming and at 10

�

for mainbeam

jamming and in both cases tuned to �100Hz. FBA was con�gured with 25 taps

in the �rst stage and a fully adaptive STAP processor in the second. For these

con�gurations BASTAP totaled 323 adaptive weights, STAP 224 adaptive weights,

and FBA had 350 adaptive weights in the �rst stage and 224 adaptive weights in

the second stage. Despite requiring fewer computations and less sample support, the

results, nonetheless, favor BASTAP over FBA.

Filtered Outputs

Conventional (nonadaptive) �lter outputs for sidelobe and mainbeam jamming are

shown in Fig. 5.6. In neither case was the 50 dB target revealed by the nonadaptive

processor. Figure 5.7 demonstrates the outputs of the adaptive processors for sidelobe

jamming. All three adaptive processors unmasked the 50 dB target at range bin 500

with BASTAP achieving the best cancellation performance. With a residual output

interference to noise ratio (OINR) of 11.7 dB, BASTAP improved over STAP by 5.8 dB

and over FBA by 6.3 dB. In a more di�cult scenario of mainbeam jamming where

the target was obscured by the direct path jammer (i.e., at 32

�

), Fig. 5.8 shows that

BASTAP at 24.2 dB still o�ered an improvement of 7.1 dB over STAP and 4.7 dB

over FBA.

For both sidelobe and mainbeam jamming, the added reference beam taps in

BASTAP clearly work to its advantage over STAP and FBA. The fact that the TSI

is stationary makes a single Doppler reference beam su�cient, thus allowing more

taps to be utilized than in FBA. Additionally, as discussed earlier in Sec. 5.1.1, FBA

su�ers from the modulation e�ect and, as a result, su�ers slight degradation over
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Figure 5.6: Nonadaptive �ltered outputs for sidelobe and mainbeam jamming with

stationary TSI and synthetic MSC.
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Figure 5.7: Adaptive �ltered outputs for sidelobe jamming with stationary TSI and

synthetic MSC.
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Figure 5.8: Adaptive �ltered outputs for mainbeam jamming with stationary TSI and

synthetic MSC.
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Figure 5.9: Mitigation performance versus Doppler for stationary mainbeam jamming

scenario.

STAP for sidelobe jamming.

Variation Across Doppler

In the previous examples mitigation performance was only considered for a single

azimuth and Doppler. In the following analysis a more comprehensive evaluation is

conducted for the mainbeam jamming scenario by varying Doppler frequency and

observing mitigation performance. By doing so we intend to demonstrate consistent

behavior for the three processors for more than just a single Doppler frequency, as was

done previously. The procedure is to �x the angle at 32

�

(i.e., mainbeam jamming)

and obtain OINR measurements as the processor look Doppler is varied incrementally

from �156:25 Hz to 156:25 Hz. Naturally, as the look Doppler is varied, the auxiliary

beam in BASTAP has to be updated accordingly, otherwise BASTAP will result in

performance degradation due to a mismatch in Doppler compensation.

Figure 5.9 shows OINR vs. Doppler for the three processors under consideration:

BASTAP, STAP and FBA. For all three processors, the worst performance occurs at

the Doppler range corresponding to the mainbeam clutter (i.e., MSC entering the

processor's mainbeam at 32

�

). The MSC power spectrum in Fig. 5.1 indicates that
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the Doppler range occupies approximately 70 Hz to 90 Hz. While TSI and mainbeam

jamming mitigation still take place in the mainbeam clutter region, MSC mitigation

clearly does not! This is not due to any particular shortcoming of the processors under

evaluation, but, rather, because the MSC is uncorrelated with energy elsewhere in

the three-dimensional spectrum and, thus, cannot be mitigated, even with full rank

three-dimensional processing.

Aside from reduced mitigation in the mainbeam clutter region, reduced miti-

gation at the edges of the Doppler spectrum occurs as well. This is true for all three

processors and, therefore, is attributed to the nature of the interference, rather than

to the processing itself. The consistency in the relative performance of the three

processors thus serves to further validate the initial observations made based on the

sample �lter outputs. This is of particular importance, since further analyses evaluate

OINR performance as a function of other parameters by �xing the look angle and

Doppler, and we wish to make our other comparisons conclusive.

Beam and Tap Analysis

Figure 5.10 illustrates OINR performance for BASTAP having between 1 and 300

taps. For sidelobe jamming (solid line) roughly 14 dB of improvement was attained

in going from 1 tap (i.e., STAP) to 300 taps. Most of the curve is fairly 
at with

sharp drop o�s occurring at roughly 50 and 140 taps. Thus, a majority of the can-

cellation can be achieved by incorporating only a select number of taps. A priori

determination of these taps could result in computational savings and a reduction

in the required sample support. In contrast to sidelobe jamming, however, main-

beam jamming (dashed line) does not have the sharp drop o�s necessary to consider

weight thinning strategies. Furthermore, in going from 1 to 300 taps, only 10 dB of

improvement was attained.

To this point only a single auxiliary beam has been considered. The tradeo�

between the number of auxiliary beams and the number of taps is brie
y examined in
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Figure 5.10: OINR vs. taps in BASTAP for sidelobe and mainbeam jamming scenar-
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Figure 5.11: OINR performance for number of beams vs. number of taps with �xed

adaptive DOF in BASTAP for sidelobe and mainbeam jamming scenarios.
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the following. In Fig. 5.11 the number of beams is varied from 1 to 14. The strategy for

beam placement is merely to select the �rst beam location and follow with successive

orthogonal beam placement interchangably on both sides. It should be noted that

this beam placement strategy does not consider the \best" set of spatial beams. The

adaptive degrees of freedom (DOF) are kept at approximately 525. This means that

as more auxiliary beams are added, fewer taps can be alloted to these beams. As the

results demonstrate, exchanging taps for spatial beams hurts performance for both

sidelobe and mainbeam jamming.

In contrast, a similar analysis in [31] �nds favor in exchanging spatial degrees of

freedom for temporal degrees of freedom for the two-dimensional SFT problem. For

equal DOF, the multiple-beam \beamspace TSI canceler" is shown to o�er roughly

equivalent mitgation performance with the \single reference beam canceler" when

there is a direct path jammer and improved mitigation performance when there is

no direct path jammer. A shorter blind interval further motivates the multiple beam

architecture. However, we see that in the three-dimensional interference environment

in which BASTAP operates, temporal DOF are favored over spatial DOF. It should

also be taken into consideration that the single reference beam canceler posseses only

one adaptive spatial DOF in the �rst tap, whereas BASTAP possesses full spatial

adaptivity in the �rst tap. If the single reference beam canceler was to be modi�ed

so that it possesses full spatial adaptivity in the �rst tap (i.e., a one-pulse version of

BASTAP) then the outcome might be di�erent.

Beam Response

In the examples for both sidelobe and mainbeam jamming BASTAP improved inter-

ference mitigation over STAP and FBA. As shown next, the improved interference

mitigation does not come at the expense of the processor response (i.e., its beam-

pattern). The beampattern responses of BASTAP and FBA are three dimensional;

however, two-dimensional cross-sectional slices are su�cient to indicate the behav-

113



G
a
in

 (
d
B

)

0

−10

−20

−30

−40

−50

D
o
p
p
le

r 
(H

z
)

BASTAP

−100

0

100

G
a
in

 (
d
B

) 0  

−40

−80

Angle (deg)

T
a
p

−50 0 50
0

5

10
Angle (deg)

STAP

−50 0 50

FBA

Angle (deg)
−50 0 50

0

5

10

Figure 5.12: Select cross-sections of the 3D response for the stationary sidelobe jam-

ming problem.
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jamming problem.
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ioral response of the processors. The top of Fig. 5.12 shows the space-Doppler cross-

section at the zeroth lag for BASTAP and FBA. The response of BASTAP shows

improvement over that of FBA and STAP as discerned by the reduced gain in re-

gions away from the target's look direction (0

�

) and Doppler frequency (�100Hz).

Both responses have a visible monostatic clutter null cutting across diagonally.

2

The

mainbeam (at 0

�

and �100Hz) can be discerned easily, although more clearly in the

BASTAP response. At the bottom of Fig. 5.12 is the SFT response of BASTAP

and FBA shown for the �rst ten time taps at �100Hz (i.e., target Doppler). The

well-behaved response of BASTAP is characterized by the absence of target spread-

ing and overall low gain in successive taps. The fact that FBA introduces excess

gain throughout the SFT region and, yet, does not achieve the level of cancellation

o�ered by BASTAP suggests that BASTAP is a more natural and e�cient choice

for the combined TSI, MSC, and mainbeam jamming problem. Note that lower gain

in regions away from the look direction make the processor less susceptible to false

alarms, hence improving robustness.

The mainbeam jamming scenario is illustrated in Fig. 5.13. The look direction

and corresponding mainbeam is at 32

�

and -100 Hz. The spatial response at -100

Hz su�ers from the same high sidelobes that were present in the mainbeam jamming

examples of the previous chapter. However, it was noted in the previous chapter

that if one considers the two-way response the high sidelobes are not truly a threat,

and, in fact, for the examples of Fig. 4.27 and Fig. 4.28 the two-way sidelobes were

shown to peak at about -20 dB. Once again, BASTAP demonstrates the least amount

of high gain artifacts throughout space and Doppler. Similarly the SFT response

of BASTAP is far improved over that of FBA. Only slightly increased gain appears

where the auxiliary channel is positioned, that is at 10

�

and -100 Hz.

In conclusion, for the stationary jamming scenario BASTAP outperforms STAP

and FBA, both in terms of interference suppression and by a qualitative assessment of

2

Note that the clutter null appears warped when plotted against azimuth angle.
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the space-Doppler beampattern responses. BASTAP also outperforms FBA in terms

of the SFT response, thus assuring far less target spreading.

5.5.3 Results for Nonstationary Jamming and TSI

In a nonstationary interference environment the jammer multipath components that

make up the composite TSI signal experience Doppler shifts from radar platform and

jammer motion. The Doppler spread in the TSI necessitates Doppler compensation

in BASTAP, and, therefore, a single reference beam at one select Doppler is no longer

su�cient. In analyzing the three processors on nonstationary data, FBA was con-

�gured with 40 taps, while extended-BASTAP was con�gured as shown in Fig. 5.5b

with sixteen 25-tap reference beams. The added Doppler beams come at the expense

of reduced temporal taps.

Adaptive weights for each of the three processors are computed for mountain-

top dataset hot6067v1 injected with 40 dB of synthetic MSC. The look direction

considered was at 30

�

and �100 Hz for the sidelobe jamming scenario and at �2

�

and �100 Hz for the mainbeam jamming scenario. For sidelobe jamming the auxil-

iary beams of the BASTAP processor were positioned pointing at the jammer at �2

�

at sixteen equally spaced Dopplers spanning the 312.5 Hz Doppler spectrum (i.e.,

�156:25;�136:71;�117:19; :::; 136:71) For mainbeam jamming the auxiliary beams

were positioned pointing at a region heavy in TSI, namely at �15

�

, with the same

Doppler distribution.

Filtered Outputs

Conventional �lter outputs for sidelobe and mainbeam jamming are shown in Fig.

5.14. Once again, neither of the conventional processors were able to unmask the

50 dB target. The �ltered outputs for the three adaptive processors for sidelobe

jamming are shown in Fig. 5.15. The residual OINR is 21 dB for BASTAP, 27 dB for

STAP, and 21 dB for FBA. In the nonstationary environment the need for additional
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Figure 5.14: Nonadaptive �ltered outputs for sidelobe and mainbeam jamming with

nonstationary TSI and synthetic MSC.
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Figure 5.15: Filtered outputs for sidelobe jamming with non-stationary TSI combined

with synthetic MSC.
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Figure 5.16: Filtered outputs for the mainbeam jamming scenario with non-stationary

TSI combined with synthetic MSC.
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Figure 5.17: Mitigation performance versus Doppler for nonstationary mainbeam

jamming scenario.

reference beams in BASTAP and the resulting reduction in taps clearly worked to its

disadvantage over FBA. However, as expected BASTAP still outperforms STAP.

Sample �lter outputs for the mainbeam jamming scenario are shown in Fig.

5.16. The residual OINR is 30 dB for BASTAP, 38 dB for STAP, and 30 dB for FBA.

As with sidelobe jamming, in the mainbeam jamming scenario BASTAP and FBA

are approximately equivalent in terms of interference mitigation. However, in general,

all su�ered performance degradation in terms of interference rejection caused by the

increasingly complicated correlation structure of the interference. When comparing

the nonadaptive outputs for the stationary and nonstationary datasets to those of the

adaptive outputs, we observe that all the adaptive processors accomplish signi�cantly

less interference rejection under nonstationary conditions.

Variation Across Doppler

Similar to the stationary environment, the variation of target Doppler for mainbeam

jamming in the nonstationary environment is considered here. For a �xed look direc-

tion of �2

�

(i.e., mainbeam jamming) the target Doppler is varied from �156:25 to

156:25 Hz, and OINR measurements are taken incrementally, as shown in Fig. 5.17.
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Figure 5.18: OINR vs. taps in BASTAP for sidelobe and mainbeam jamming.

For BASTAP, sixteen auxiliary beams distributed evenly across Doppler were pointed

at �15

�

. Since the auxiliary beams cover the entire Doppler spectrum, there is no

need to continuously update beams with changing Doppler as was necessary for the

stationary environment.

This time, the mainbeam clutter appears at �2

�

or, equivalently, in the ap-

proximate range between �20 and 0 Hz, once again obstructing mitigation in that

region. The e�ect of reduced mitigation at the Doppler edges is far less pronounced

in the nonstationary environment than it was in the stationary environment (Fig.

5.9). However, in general the OINR performance throughout the Doppler region has

been degraded because of the more di�cult nature of the nonstationary interference.

Overall OINR performance for BASTAP, STAP, and FBA is fairly consistent across

Doppler (even more so than for the stationary environment). Therefore, it is safe to

continue to rely on results from selected sample Doppler and angle, allowing other

parameters to be varied as OINR performance is evaluated for those parameters.

Tap Analysis

Just as with stationary data, adding taps is expected to enhance performance. Figure

5.18 illustrates OINR performance for BASTAP having between 1 and 50 taps. In
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the analysis we were not able to extend the �lter in fast-time to the extent that was

done for BASTAP in stationary TSI. This is because each tap in the nonstationary

con�guration is applied to 16 reference beams which cover the Doppler spectrum.

As a result, the number of degrees of freedom associated with each fast-time tap

is 16 times as many. For the nonmainbeam jamming scenario (solid line) roughly

9 dB improvement is attained in going from 1 tap (STAP) to 50 taps. The increase

in performance is fairly uniform throughout the region of evaluation, so there is no

point in searching for the most e�ective taps for weight thinning purposes. In the

mainbeam jamming scenario (dashed line), a 10 dB improvement is attained in going

from 1 to 50 taps.

Beam Response

In the examples of both sidelobe and mainbeam jamming BASTAP performed equiv-

alent to FBA in terms of interference mitigation. As will be shown next, the space-

Doppler responses of BASTAP are also roughly equivalent to those of FBA but still

maintaining an edge over STAP. At the top of Fig. 5.19 the space-Doppler beampat-

tern response for the �rst tap of each of the three processors in the sidelobe jamming

example is shown. The look direction is at 30

�

and -100 Hz, as indicated by the

mainlobe appearing at that location. Qualitatively, the space-Doppler beampattern

response of BASTAP appears about the same as that of FBA. Both show a slight

improvement over STAP. The nonstationarity of the problem introduced higher side-

lobes and gain artifacts into the respective responses, as the possibility of e�cient

utilization of the TSI energy from the di�erent regions of the space-Doppler spec-

trum is diminished. The clutter null appears equally well in all three responses. The

improvement of BASTAP over FBA is still apparent from its SFT response, shown

for the �rst 10 taps at the bottom of Fig. 5.19. Once again, excess gain at successive

taps for BASTAP is practically unnoticable even for auxiliary beams at �2

�

.

The mainbeam jamming scenario is illustrated in Fig. 5.20. The look direction
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Figure 5.19: Select cross-sections of the 3D response for the nonstationary sidelobe

jamming problem.
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Figure 5.20: Select cross-sections of the 3D response for the nonstationary mainbeam

jamming problem.
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Table 5.4: Processor con�gurations for the variable clutter experiment.

BASTAP FBA

Jamming �

0

f

0

(�

aux

; f

aux

) Taps Taps

stat 0 �100 (32;�100) 100 25

stat/mbj 32 �100 (10;�100) 100 25

nstat 30 �100 (�15; all) 25 40

nstat/mbj �2 �100 (�2; all) 25 40

and corresponding mainbeam is at �2

�

and -100 Hz. In terms of the space-Doppler

response there is no apparent improvement or degradation of BASTAP over FBA or

STAP. In terms of the SFT response BASTAP does demonstrate improvement over

FBA. This time the majority of the gain at successive taps of BASTAP appears at

�15

�

, the location of the auxiliary channel.

Despite its clear advantage over FBA in the stationary environment, BASTAP

results to this point proved far less dramatic in the nonstationary environment, as

the comparisons with STAP and FBA demonstrated. In the next section important

insight into BASTAP and FBA is provided in terms of varying MSC power.

5.6 Other Results

5.6.1 Varying Clutter Power

So far, evaluation and comparison of the three processors has been restricted to ex-

perimental TSI datasets combined with synthetic MSC at 40 dB. In reality, the degree

of clutter power relative to the TSI and jamming varies signi�cantly with the sur-

rounding conditions. Clutter power also varies substantially with distance from the

radar [66, 59]. Ignoring the latter e�ect, we evaluate mitigation performance for the

mmit004v1 dataset combined with synthetic MSC ranging in power from 0 to 60 dB.

The three processors are con�gured according to the parameters in Table 5.4. For the

nonstationary experiments, \all" signi�es sixteen Doppler compensation beams dis-
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Figure 5.21: OINR vs. clutter power for BASTAP, STAP, and FBA.
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tributed evenly across the 312:5 Hz Doppler spectrum. Figure 5.21 illustrates results

for the sidelobe and mainbeam jamming scenarios under stationary and nonstationary

conditions. Under stationary conditions, BASTAP outperforms both STAP and FBA

for the given MSC power range. The more interesting results occur for nonstationary

TSI and jamming. The sidelobe and mainbeam jamming scenarios are considered

together since their outcomes are similar. For less than approximately 40 dB of syn-

thetic MSC, FBA outperforms BASTAP and STAP, whereas beyond 40 dB BASTAP

outperforms FBA. For su�ciently high MSC levels in nonstationary TSI, FBA loses

out to STAP as well.

From the �gure it can be observed that STAP and BASTAP are quite insensitive

to the level of MSC. The reason being that STAP is extremely adept at contending

with MSC and, in particular, with synthetic MSC. STAP's performance is, thus,

dictated primarily by the TSI and mainbeam jamming present in the data. Similarly,

BASTAP, which possesses as a principal component a fully adaptive STAP processor,

tends to handle the MSC better than the TSI and mainbeam jamming, which are only

handled in a reduced rank fashion. In contrast, FBA is extremely sensitive to levels

of MSC. The high sensitivity is due to the modulation e�ect described earlier in Sec.

5.1.1 that distorts the MSC. The distorted clutter in turn imposes an ever increasing

burden on the second stage of the FBA as its power is increased.

5.6.2 Varying Auxiliary Beam Position

For all of the previous analyses, the angular position of the auxiliary beam was selected

through a general knowledge of the interference environment without, however, much

consideration for optimality. In the following analysis the position of the auxiliary

beam(s) for BASTAP is varied across angle while maintaining a �xed look direction.

Figure 5.22 illustrates the results for stationary and nonstationary environments and

sidelobe and mainbeam jamming scenarios. Note that for the nonstationary simula-

tions, the look direction of all sixteen reference beams was varied together. A red
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vertical line indicates the jammer position, a blue dotted line the mainbeam clut-

ter position (i.e., clutter sharing the same Doppler as the target), and a dashed line

indicates the look direction.

The results reveal some surprising observations. In particular, that OINR per-

formance is not adversely a�ected by the angular position of the reference beam(s).

Prior to the simulation it was assumed that for sidelobe jamming it was best to orient

the reference beam in the direction of the jammer, whereas for mainbeam jamming

it was best to orient it towards a region heavy in TSI. The results, however, indicate

the converse. Optimal beam placement for the sidelobe jamming scenario is not at

the position of the jammer and for the mainbeam jamming scenario is not at adjacent

TSI, but rather at the jammer itself. From the �gure plots it seems that the safest

approach is to point the reference beam(s) either at the look direction or jammer,

and, indeed, the given approach yields near optimal to optimal performance.

Another observation is that pointing the reference beam at the mainbeam clut-

ter (blue dotted line) does not signi�cantly degrade performance for BASTAP. Con-

sider BASTAP with only a single reference beam (under stationary conditions). Since

the purpose of the reference beam is to collect delayed TSI and/or mainbeam jam-

ming energy to use in predicting and, thus, cancelling TSI and/or direct path jam-

ming in the look direction, we might assume that MSC in the reference beam taps

will not allow the necessary prediction mechanism to operate properly. However,

this assumption is false, since the MSC, which is uncorrelated in fast-time, tends to

integrate incoherently in the processor output and, thus, average out. Whereas the

TSI and jamming, which are correlated in fast-time, tend to integrate constructively

because of the choice of �lter weights.

Finally, it can be observed that the plots are characterized by peaks and val-

leys. If plotted on a spatial frequency axis, the peaks would appear equidistant from

each other with an approximate spacing of 1/N; all with the exception of the two

peaks surrounding the jammer and some of the outlying peaks. The spacing between
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peaks surrounding the jammer are equidistant from the jammer at a spacing of ap-

proximately 1/N. If a conventional beampattern (pointed at the jammer) would be

superimposed on any of the four plots, the nulls of the conventional beampatterns

would approximately coincide with the peaks in the OINR plots (less the outlying

peaks). Thus, the resulting pattern of peaks and valleys indicates that the jammer

direct path and multipath in its proximity play an essential role in mitigation. When-

ever the reference beam places a null in the direction of the jammer, performance

plummets down. Considering the �lter outputs in Fig. 5.16, BASTAP and FBA per-

form approximately the same. Had we considered placing the auxiliary beam at the

jammer location rather than at 15

�

, from Fig. 5.22 we see that our processor would

have fared approximately 1 dB better.

5.6.3 Results for Other Datasets

So far only two TSI datasets have been considered; stationary dataset mmit004v1

and nonstationary dataset hot6067v1. Tables 5.5 and 5.6 summarize results from

these and other datasets combined with 40 dB of synthetic MSC. In each table, the

individual datasets are evaluated at a look angle, �

0

, and Doppler frequency, f

0

.

For BASTAP the reference beam parameters are listed as an angle-Doppler pair

(�

aux

; f

aux

). For nonstationary datasets hot6067v1, rio042v1 and rio043v1, \all"

signi�es sixteen Doppler compensation beams distributed evenly across the 312:5 Hz

Doppler spectrum. For both sidelobe and mainbeam jamming, BASTAP consistently

outperforms STAP and FBA under stationary TSI and jamming conditions, as repre-

sented by the mmit datasets. Under nonstationary conditions, BASTAP outperforms

FBA for datasets rio042v1 and rio043v1, and also hot6067v1 with mainbeam jam-

ming.
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Table 5.5: Sidelobe jamming performance results for other MT datasets.

a

Contains TSI without a direct path jammer.

b

Contains nonstationary TSI.

BASTAP STAP FBA

Name �

0

f

0

(�

aux

; f

aux

) OINR OINR OINR

mmit004v1 �30:0 0:0 (32:0,0) 17:2 18:6 18:8

mmit013v1 0:0 100:0 (66:2,100) 13:5 14:7 15:8

mmit043v1 �30:0 0:0 (32:0,0) 6:0 7:3 8:7

mmit044v1 �30:0 0:0 (32:0,0) 6:4 7:7 8:0

mmit045v1 �30:0 0:0 (32:0,0) 5:1 6:4 7:3

mmit048v1 �30:0 0:0 (32:0,0) 6:4 7:6 8:0

mmit109v1

a

�30:0 0:0 (32:0,0) 21:8 23:1 22:9

mmit112v1

a

�30:0 0:0 (32:0,0) 21:5 22:7 23:3

hot6067v1

b

40:0 0:0 (�1:6, all ) 24:4 27:5 22:4

rio042v1

b

�30:0 0:0 (8:7, all ) 8:6 13:1 10:7

rio043v1

b

�40:0 0:0 (10:7, all ) 4:5 8:6 7:4

Table 5.6: Mainbeam jamming performance results for other MT datasets.

a

Contains TSI without a direct path jammer.

b

Contains nonstationary TSI.

BASTAP STAP FBA

Name �

0

f

0

(�

aux

; f

aux

) OINR OINR OINR

mmit004v1 32:0 0:0 (32:0,0) 23:4 31:0 29:9

mmit013v1 66:2 0:0 (66:2,0) 24:8 34:4 27:9

mmit043v1 32:0 0:0 (32:0,0) 21:5 26:2 24:8

mmit044v1 32:0 0:0 (32:0,0) 21:3 25:9 24:0

mmit045v1 32:0 0:0 (32:0,0) 18:2 24:3 21:8

mmit048v1 32:0 0:0 (32:0,0) 21:8 26:4 24:3

mmit109v1

a

32:0 0:0 (32:0,0) 24:7 26:4 27:4

mmit112v1

a

32:0 0:0 (32:0,0) 24:0 26:1 27:5

hot6067v1

b

�1:6 100:0 (�1:6, all ) 28:4 38:0 30:7

rio042v1

b

8:7 100:0 (8:7, all ) 32:8 37:4 37:7

rio043v1

b

10:7 100:0 (10:7, all ) 31:6 36:7 37:1
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5.7 Conclusions

The main innovation introduced in this chapter is a reduced rank technique for the

joint mitigation of jamming, TSI, and monostatic clutter. A STAP �lter accomplishes

the majority of interference rejection, with further TSI suppression accomplished via

an additional tapped reference beam. Simultaneous optimization of the MSC �lter

weights and reference beam weights yields the desired BASTAP processor. A single

reference beam con�guration proves e�ective for stationary TSI, whereas a multiple

reference beam con�guration proves e�ective for nonstationary TSI.

It was demonstrated through a number of examples that the processor per-

forms quite well under conditions of stationary TSI, o�ering improved cancellation

and beampattern response performance over existing techniques. In the case of non-

stationary TSI, extended-BASTAP still maintained superiority over STAP but evened

o� with the factored beamspace approach. Although the results on nonstationary data

initially proved less promising for BASTAP, additional analyses that were conducted

indicated other possible advantages for BASTAP. In particular, variation of clut-

ter power demonstrated that STAP and BASTAP maintain consistent performance

with varying clutter levels, whereas the factored beamspace approach degraded dra-

matically over both STAP and BASTAP as the clutter level increased beyond 40 dB.

Additionally, without a beam selection strategy for BASTAP the results for BASTAP

were less than optimal. Variation of the auxiliary beam position showed that with

a proper beam placement strategy BASTAP performance can be enhanced beyond

what earlier results had demonstrated.
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CHAPTER 6

Monopulse Processing Using BASTAP

As in Chapter 4 we wish to extend the monopulse concept to processing in three

dimensions: space, fast-time, and slow-time. This extension will allow us to perform

adaptive monopulse processing in the combined presence of TSI, MSC, and mainbeam

jamming. As seen earlier, mainbeam jamming introduces distortions into the main-

beam of the sum processor and, likewise, into the split mainbeam in the di�erence

processor, thus, degrading the MRC. We would like to develop a three-dimensional

monopulse processor that has undistorted target response characteristics in the main-

beam and, yet, provides adequate suppression of TSI, MSC, and mainbeam jamming

with minimal target spreading. Furthermore, we would like the processor to be ro-

bust to Doppler mismatch. The processor under consideration is Beam-Augmented

STAP (BASTAP) with sum and di�erence constraints chosen to achieve these crite-

ria. In this chapter we present a development of the BASTAP monopulse processor

followed by an evaluation of various performance aspects of the new processor through

simulation on experimental TSI and synthetic MSC data.

6.1 Extending BASTAP to Monopulse

Following a similar approach to that of Chapter 4 we wish to reinterpret some of the

spatial quantities de�ned in Sec. 3.2 for three-dimensional processing, in particular

for use with the BASTAP processor. Sum and di�erence outputs are given in terms



of the respective sum and di�erence BASTAP processors,

z

�

(t) =W

H

�

Y(t) z

�

(t) =W

H

�

Y(t); (6.1)

where Y(t) was de�ned in (5.2). As with SFT monopulse, the de�nition of the error

voltage remains the same: the real part of the ratio of di�erence-to-sum outputs

�

v

(t) = <

�

z

�

(t)

z

�

(t)

�

: (6.2)

The error voltage here conveys purely directional information that must be con-

verted to angular form via an MRC. The MRC was de�ned in Chapter 3 as the ratio

of di�erence to sum beampatterns and represented the ideal error voltage response

to targets arriving from a particular angular region about boresight. BASTAP sum

and di�erence processors have beampattern responses that are functions of angle,

fast-time, and Doppler

W(�; f; �) =

8

<

:

W

H

main

v(�; f) � = 0;

W

aux

(�)

H

�

F

H

v(�; f)

�

1 � � � T � 1

; (6.3)

where W

main

is a vector comprised of the �rst MN weights of W (i.e., the STAP

component of BASTAP or main channel weights), and W

aux

(�) is a vector (or scalar

for single beam BASTAP) comprised of the auxiliary weights of W from the �

th

lag. In BASTAP the target response is constrained to have a speci�c gain at a

given angle and Doppler at the �rst tap. It is, thus, anticipated that the response

has a peak at the �rst tap, where the gain constraints are applied. If the response

is indeed strongest at the �rst tap, then it is reasonable to consider the response

at only that tap in the de�nition of the MRC. Furthermore, since angle estimation

is taking place independently of Doppler estimation, we only consider the spatial

response at a �xed Doppler frequency, f

0

. The desired spatial beampattern response

is, thus, W(�; f

0

) =W

H

main

v(�; f

0

), where for notational convenience the parameter

representing temporal (range) dependency, l, has been left out. Once again, the MRC

is de�ned as the real part of the ratio of di�erence to sum spatial responses at the
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assumed Doppler frequency,

M(�) = <

�

W

�

(�; f

0

)

W

�

(�; f

0

)

�

: (6.4)

Now that the MRC has been de�ned for the three-dimensional BASTAP processor,

we consider a design approach for the respective sum and di�erence processors.

6.2 Constraint Design for BASTAP Monopulse

Angle estimation performance is governed by two factors: the mitigation perfor-

mance of the respective sum and di�erence processors and, in a qualitative sense, the

integrity of the MRC. In the previous chapter it was demonstrated that BASTAP

performs quite well in terms of interference mitigation. However, experimental re-

sults on Mountaintop (MT) data in Chapter 4 showed that an SFT processor with a

single unity gain constraint introduced signi�cant distortion into the sum and di�er-

ence beampatterns when staring directly at the TSI or jammer, which holds true for

BASTAP as well. The distortions manifested themselves not only in the sidelobes,

but also in the processor mainbeam. Distortions in the mainbeam pose the greatest

threat to angle estimation, and, as such, it is necessary to alleviate them.

The approach taken in Chapter 4 for SFT monopulse was through application

of spatial response constraints at T

0

and range constraints at successive taps. For

BASTAP, target spreading was demonstrated to be negligible and, therefore, range

constraints are not required. Specifying a full set of spatial response constraints at

T

0

entailed giving up adaptivity completely at T

0

. However, because of the presence

of MSC, specifying a completely conventional beampattern response at the �rst tap

of BASTAP is not an option, since no MSC cancellation could be achieved. Rather,

a preferred choice is to implement a reduced set of spatial constraints within the

mainbeam as shown in Fig. 6.1. In the �gure, constraint locations in the space-

Doppler spectrum are marked by \�" symbols, where those in black denote a primary

\on-Doppler" set of spatial response constraints (SRCs) and those in gray denote a
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Figure 6.1: Constraint design for sum and di�erence BASTAP processors.

secondary \o�-Doppler" set of SRCs. At the \�" locations the beampattern response

is constrained to be that of the respective sum and di�erence conventional processors,

v
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= v(�
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;
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f

0
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: (6.5)

The constraint matrix and vector are given by

C

�

= C

�

=

h

(B
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H

0

9�T�1

i

; (6.6)

c
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H
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�
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�
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H

v

�

; (6.7)

where,

A =

h

a(�

0

�

1

2N

) a(�

0

) a(�

0

+

1

2N

)

i

;

B =

h

b(

�

f

0

�

1

2M

) b(

�

f

0

) b(

�

f

0

+

1

2M

)

i

: (6.8)

The primary SRCs ensure that the MRC at the assumed Doppler, denoted as M

0

,

\resembles" that of the conventional processor in Fig. 3.5.

The secondary, \o�-Doppler" SRCs are chosen to address a di�erent concern.

In practice, the precise Doppler frequency of the target, f

t

, is unknown, and all that

is available is an estimate of the target Doppler, f

0

. By employing the MRC for the
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Figure 6.2: Illustration of a mapping error.

assumed Doppler, M

0

, in place of the MRC for the target Doppler, M

t

, a mapping

error is introduced into the angle estimate. That is unlessM

0

=M

t

! To demonstrate

the e�ect of a mapping error consider Fig. 6.2. An error voltage uncorrupted by

interference maps through M

0

to a corresponding angle, �

0

. Had the error voltage

been used together with the correct MRC, M

t

, the correct angle measurement of �

t

would have been obtained. The resulting bias in angle estimate,

^

�

0

��

t

, is due purely

to an error in the mapping function.

One of the advantages of the conventional processor de�ned in (2.10) is that it

has a separable space-Doppler response (i.e., W(�; f) = W(�)W(f)). Furthermore,

the temporal (Doppler) components of the sum and di�erence vectors in (6.5) are

equal, b

�

(f) = b

�

(f) = b(f), and, thus, the temporal responses are equal,W

�

(f) =

W

�

(f). As a result the temporal components in the MRC cancel out

M(�) = <

�

W

�

(�)W

�

(f)

W

�

(�)W

�

(f)

�

= <

�

W

�

(�)

W

�

(�)

�

; (6.9)

making the MRC independent of the assumed Doppler frequency. In the design of the

BASTAP sum and di�erence processors, because of the additional \anchor" points at

f

0

�

1

2M

as indicated by the gray marked � symbols in Fig. 6.1, the entire mainbeam

surface is expected to resemble that of the conventional processor. Thus, the resulting

134



G
a
in

 (
d
B

)

−0

−10

−20

−30

−40

−50

−60

D
o
p
p
le

r 
(H

z
)

Σ

−100

0

100

G
a
in

 (
d
B

)

20

10

0

−10

−20

−30

−40

D
o
p
p
le

r 
(H

z
)

∆

−100

0

100

−50 0 50
−40

−20

0

Angle (deg)

G
a
in

 (
d
B

)

−50 0 50
−10

0
10
20
30

Angle (deg)

G
a
in

 (
d
B

)
Figure 6.3: Beampattern responses for sidelobe jamming under stationary conditions

with slices taken at �100 Hz.

adaptive monopulse processor possesses in an approximate sense (and only within the

scope of the mainbeam region) the desired temporal independent MRC property of

the conventional processor.

6.3 Simulation Results

As observed in the previous chapter, BASTAP performed quite well in terms of inter-

ference mitigation with respect to other processors. In this section various aspects of

angle estimation performance and robustness of BASTAP monopulse are investigated

through experimentation on MT TSI-data combined with synthetic MSC. Both side-

lobe and mainbeam jamming scenarios are considered. Dataset mmit004v1 is used

to demonstrate results for stationary conditions and dataset hot6067v1 is used to

demonstrate results for nonstationary conditions.
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Figure 6.4: Beampattern responses for mainbeam jamming under stationary condi-

tions with slices taken at �100 Hz.

6.3.1 Beampattern Response

Before proceeding to evaluate angle estimation performance, we wish to qualitatively

evaluate beampattern responses under various conditions. The processor under con-

sideration is a 300 tap BASTAP processor with 9 SRCs tuned to 0

�

and �100 Hz.

The resulting sum and di�erence beampatterns are shown in Fig. 6.3. As expected

the processors are well behaved throughout the space-Doppler spectrum. Doppler

cuts at �100 Hz reveal low-distortion spatial beampatterns, which ultimately play an

important role in maintaining the integrity of the MRC.

The mainbeam jamming scenario is considered in Fig. 6.4. As expected, the

sidelobe levels are very poor. However, they have not degraded (in a noticeable fash-

ion) beyond what was observed for the unity gain BASTAP processor of the previous

chapter. On the other hand, the stability of the response within the mainbeam at 32

�

and �100 Hz is far improved for both sum and di�erence BASTAP processors with

nine SRCs than what it would be with only a unity gain constraint.

Results for the nonstationary case are very similar to those presented for the
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Figure 6.5: Angle estimation performance for sidelobe jamming and mainbeam jam-

ming under stationary conditions.

stationary case and are therefore omitted.

6.3.2 Angle Estimation Performance

After having veri�ed that the SRCs are able to maintain the integrity of the mainbeam

in the sum processor and, likewise, of the split mainbeam in the di�erence processor,

we proceed to evaluate angle estimation performance. We consider for the stationary

environment a 300 tap BASTAP processor as before. Figure 6.5 illustrates results

for the sidelobe and mainbeam jamming scenarios. The target SNR is varied from

20 to 100 dB and the worst case STDAE performance is recorded at each SNR incre-

ment. Angle estimation performance of BASTAP is clearly better than that of the

other processors under consideration for both the sidelobe and mainbeam jamming

scenarios.

In a nonstationary environment a 25 tap BASTAP processor with 16 reference

beams was evaluated. Figure 6.6 illustrates results for the sidelobe and mainbeam

jamming scenarios in the nonstationary environment. Although it is clear that the

adaptive processors are less e�ective in the nonstationary case, still, the angle estima-

tion performance is still far improved over that of the conventional processor. Once

again BASTAP prevails over STAP for both sidelobe and mainbeam jamming.
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Figure 6.6: Angle estimation performance for sidelobe jamming and mainbeam jam-

ming under nonstationary conditions.

6.3.3 MRC Spreading

It was stated earlier that the purpose of the secondary SRCs was to guard the MRC

from small variations in Doppler. As shown next, in lacking a secondary set of \o�-

Doppler" SRCs, the MRC is subject to signi�cant variation, consequently limiting

STDAE performance. Figure 6.7 shows the e�ect of MRC spreading in a mainbeam

jamming scenario for BASTAP with three and nine SRCs, respectively. The MRCs

at the assumed Doppler frequency, M

0

, are indicated in black whereas MRCs in the

range 0 <

�

�
�

f �

�

f

0

�

�

<

1

2M

are indicated in gray. The extent of variation in the shape

of the MRC is quite signi�cant when only three SRCs are employed, as demonstrated

by the \thick gray shadow" about M

0

. Unless the Doppler estimate can be re�ned

further, STDAE performance is bound by the uncertainty of the MRC. For instance,

assuming the error voltage output is uncorrupted by interference, the uncertainty in

the mapping function alone introduces an uncertainty in the angle estimate, which for

the three SRC example can be as high as 0:5

�

(taken to be the \thickest" horizontal

width of the gray region). When all nine SRCs are utilized, the uncertainty in the

MRC is diminished by a factor of approximately �ve, thus limiting angle estimation

accuracy to 0:1

�

.
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6.4 Joint Angle and Doppler Estimation

In [60] the principle behind joint azimuth and elevation angle estimation is described.

The monopulse processor at hand employs a single sum beam output and two di�er-

ence beam outputs. The ratio of each of the di�erence outputs to the sum output

results in two error voltage outputs. Similarly, the ratio of each of the two di�erence

beams to the sum beam results in two monopulse response curves (MRCs) to be used

with the corresponding error voltage outputs. If the di�erence beams with respect

to the sum beam lie in two separate planes, then each MRC maps the corresponding

error voltage output to an angle in the associated plane (i.e., azimuth or elevation).

However, this mapping only works if the MRCs in the corresponding planes are inde-

pendent of the angle in the other plane. As noted before, a conventional beampattern

possesses the separability property that guarantees the MRC to be independent of

variation in the other plane, whether the other plane is an angle plane or a Doppler

plane. Since BASTAP with nine SRCs is approximately separable within the main-

beam, as evidenced by the lack of MRC spreading in Fig. 6.7, the principle of joint

azimuth-elevation estimation can be applied to joint angle-Doppler estimation for our

BASTAP processor.

In a nonadaptive con�guration the sum processor remains as a steering vector

and the di�erence processors are derived from the steering vector by di�erentiating

it with respect to the spatial and Doppler frequency variables, respectively,
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The e�ect of taking the derivative with respect to each frequency variable can be

observed in Fig. 6.8, where a horizontal and vertical null each split the mainbeam

in a di�erent plane. The sum and two di�erence outputs are given in terms of the

respective processors

z

�
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�

Y(t); z

�
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(t) =W

H

�

1

Y(t); z

�

2
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Y(t): (6.11)
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The real part of the ratio of each di�erence output to sum output gives us two error

voltage outputs
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Similarly two MRCs are obtained by taking the real part of each of the di�erence to

sum spatial responses
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Design of an adaptive joint angle-Doppler monopulse processor entails con-

straining the sum and two di�erence BASTAP beampattern responses in the �rst tap

to match those of the corresponding conventional processors within the mainbeam.
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where A and B have been de�ned earlier in (6.8) and v

�

, v

�

1

and v

�

2

in (6.10).
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6.5 Conclusions

This chapter extended the BASTAP architecture of the BASTAP processor in the

previous chapter to perform monopulse processing. Initially, the monopulse concept

was extended to three-dimensions to enable its use with BASTAP. Sum and di�erence

processors employing BASTAP were designed through proper selection of constraints

and successfully implemented in a monopulse system. Simulation results demon-

strated the merit of BASTAP monopulse over STAP monopulse for both stationary

and nonstationary conditions. At negligible expense to angle estimation performance

it was shown that additional \o�-Doppler" constraints provide stability to the MRC.

Although the design chosen for the BASTAP components of the monopulse

system has been speci�cally tailored for robustness in a mainbeam jamming and TSI

environment, its use under ordinary jamming conditions comes at little or no expense

to angle estimation performance and also serves to stabilize the MRC. An added

advantage of the nine-constraint design is that within the extent of the mainbeam

the beampattern is approximately separable in the space and Doppler dimensions;

thus allowing direct (non-iterative) joint angle-Doppler estimation to take place by

employing an additional di�erence processor.
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CHAPTER 7

Conclusions

The main topic addressed in this thesis is that of angle estimation in the presence of

jamming (including mainbeam jamming), TSI and MSC. The methodology adopted

was to extend the monopulse technique for angle estimation, traditionally employed in

the spatial domain, to the space-time domain. In the presence of mainbeam jamming

and TSI, this entailed generalizing the monopulse concept to SFT and then designing

the sum and di�erence processor components. Linearly constrained optimization

was employed to maximize interference rejection in the individual sum and di�erence

components. Key features of the SFT processor included a tap-centered con�guration

along with extended range constraints and spatial response constraints. The tap-

centered con�guration was necessary because TSI and jammer samples were correlated

at both forward and backward time lags as a result of analog baseband �lters at

the front end of the channel receivers. Extended range constraints were necessary

to prevent target spreading across the entire mainbeam region at successive taps.

Finally, spatial response constraints were necessary to ensure a robust MRC.

A comparison of SFT monopulse with spatial monopulse was conducted to

demonstrate its merit over spatial monopulse. An extensive evaluation of SFT monopulse

itself was conducted and various tradeo�s in performance and robustness were re-

ported. A full set of constraints, for instance, was shown to o�er increased robustness.

However, at least twenty fast-time taps were necessary to provide advantage in terms

of angle estimation performance over the nonrobust spatial adaptive monopulse pro-



cessor. Further analysis showed that the basis of the comparison was partly faulty

and that the increased beamwidths of the more robust processors put them at an

apparent disadvantage. The poor spatial response characteristics of all processors for

mainbeam jamming conditions was shown to be far less problematic when considering

the directional nature of the radar's transmission characteristics.

For an interference environment containing jamming, TSI, and MSC, an ex-

tra processing dimension was required. Because of the excessive computational and

training requirements of a full rank three-dimensional processor, reduced rank al-

ternatives were sought, ultimately leading to the development of Beam-Augmented

STAP. STAP by itself was able to achieve a signi�cant amount of cancellation in the

combined interference environment, even in a mainbeam jamming scenario. Through

the addition of one or more tapped reference beams and simultaneous optimization

of all weights, the resulting BASTAP processor was able to enhance TSI and MSC

mitigation over STAP. A comprehensive evaluation in a stationary TSI environment

demonstrated the merit of BASTAP over STAP as well as over FBA. In a nonsta-

tionary TSI environment BASTAP performed on par with FBA but still fared better

than STAP. Further analyses demonstrated the merit of BASTAP with respect to

FBA even in the nonstationary TSI environment. The �rst of two such experiments

demonstrated that beyond 40 dB of MSC (while maintaining the TSI level constant)

FBA performance degrades signi�cantly below that of BASTAP. In a second exper-

iment it was demonstrated that a further increase in performance of BASTAP was

possible by considering an optimal pointing direction for the reference beam.

A similar methodology for extending spatial monopulse to SFT monopulse was

used in arriving at a BASTAP monopulse architecture. The sum and di�erence pro-

cessor components were designed to have low-distortion in the mainbeam region of

the space-Doppler response at the �rst tap, thus ensuring a robust MRC for angle

estimation. Additional care was taken to minimize the e�ect of Doppler mismatch on

the resulting angle estimates through the use of added constraints in the mainbeam
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region. Performance evaluation of the resulting three-dimensional monopulse proces-

sor demonstrated a clear advantage in employing BASTAP over ordinary STAP for

angle estimation. Finally, an algorithm employing a sum beam and two di�erence

beams for performing joint angle-Doppler estimation was derived.

7.1 Contributions

The contributions of this thesis include:

� A method by which a monopulse processor is combined with an adaptive space-

time processor to provide a precise angle tracking capability in the presence of

TSI and mainbeam jamming.

� An innovative three-dimensional processor that o�ers improved mitigation per-

formance in the presence of combined MSC, TSI, and mainbeam jamming.

� A generalization of this algorithm to operate in the presence of nonstationary

jamming generated by airborne jammers.

� An extension of this algorithm to perform joint angle-Doppler estimation.

� A complete package for monopulse processing in MSC, TSI, and mainbeam

jamming for both ground based and airborne radar and jammers.

7.2 Future Work

The main objectives of this thesis { to develop an SFT monopulse algorithm and a

three-dimensional reduced rank algorithm for mitigation and monopulse processing

in the combined presence of MSC, TSI, and mainbeam jamming { were met. A com-

prehensive evaluation of the proposed algorithms was conducted but much remains

to be investigated and improved upon. Some possibilities for future research include:
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� Investigation of a means by which to reduce the high gain artifacts present in

the beampattern responses of the sum and di�erence processors in a mainbeam

jamming scenario. The high gain artifacts pose a signi�cant threat if a second

target enters and corrupts the monopulse output through the artifact. In such

cases it may be necessary to arti�cially suppress that artifact through added

constraints.

� Exploration of BASTAP with alternative tap con�gurations and thinned weights.

A tap-centered con�guration proved bene�cial to SFT monopulse. Likewise, it

could prove bene�cial in conjunction with BASTAP, whereas weight thinning

could prove bene�cial by way of rank reduction.

� Development of improved beam placement strategies. As demonstrated in the

thesis, optimal beam placement can improve mitigation performance.

� Exploration of partial dimension BASTAP architectures. At present BASTAP

requires solving simultaneously for a full set of STAP and reference beam

weights. Although a signi�cant reduction in rank was achieved with BASTAP,

the computational and training resource demands are, nonetheless, still signif-

icant. One possibility is to implement extended-BASTAP in an element-space

post-Doppler con�guration [66, 12, 64], where each Doppler partition receives

its own reference beam(s).

� Employment of experimental TSI in conjunction with experimental MSC in

evaluating BASTAP. Only synthetic MSC has been used in this thesis.

� Investigation of various training strategies for SFT monopulse and BASTAP. At

present no particular consideration has been given to the method of training.

Di�erent training strategies might not only prove more e�cient, but will be

necessary when considering nonstationary experimental MSC and the need for

target free training data [59].
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APPENDIX A

Zero-Bias Constraint Vs. No Constraint

In comparing the standard monopulse algorithm to its zero-bias variation developed

by Castella in [10], it was noted that the performance curves came out precisely the

same. In fact, it can be shown that not only are the statistical performance curves

identical but that the deterministic angle estimates are equivalent. This implies that

imposing the additional zero-bias constraint does not bene�t angle estimation per-

formance, despite what appears to be an improved di�erence beampattern response.

An analytical proof of this result follows.

Let W

S

and W

D

represent the standard adaptive sum and di�erence weight

vectors, and

�

W

S

and

�

W

D

represent the zero-bias adaptive sum and di�erence weight

vectors. Also, let S represent a conventional sum processor and D a conventional

di�erence processor. Applying Castella's di�erence processor constraints to (2.24),
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Both the standard and Castella's version of the sum processor are equal.
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The error voltage of Castella's processor can be expressed in terms of the error voltage

of the standard processor,
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where the error voltage of the standard processor is
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Similarly, the MRC of Castella's processor can be expressed as a function of the MRC

of the standard processor
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where the MRC of the standard processor is
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What remains to be shown is that
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One of the steps in (A.8) assumes that

�

M

�1

fyg = M

�1

n

1

k

�

1

(y � k

�

2

)

o

. This is in

fact only true whenM(y) is a continuous monotone increasing or decreasing function

(i.e., invertible), which is the case for any valid monopulse function.

Since no conditions have been placed on the di�erence processor, D, the proof

provided in this appendix applies to arbitrary di�erence weights, including space-time

weights.
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APPENDIX B

Acronyms

Table B.1: Acronyms used in the thesis.

Acronym Meaning

AEW airborne early warning

BASTAP beam augmented STAP

CPI coherent processing interval

dB decibel

DFT discrete Fourier transform

DOF degrees of freedom

FBA factored beamspace algorithm

INR interference-to-noise ratio

KHz kilohertz

KW kilowatt

LFM linear frequency modulation

MC Monte Carlo

MHz megahertz

continued on next page



continued from previous page

Symbol De�nition

MF monopulse formula

ML maximum likelihood

MRC monopulse response curve

MSC monostatic clutter

MT mountaintop

MV minimum variance

OINR output interference-to-noise ratio

pdf probability density function

PRI pulse repetition interval

RF radio frequency

rms root mean square

SFT space/fast-time

SINR signal-to-interference plus noise ratio

SMI sample matrix inversion

SNR signal-to-noise ratio

SRC spatial response constraint

SRB single reference beam canceler

SST space/slow-time

STD standard deviation

STDAE standard deviation of angle error

STAP space-time adaptive processing

TSI terrain scattered interference

continued on next page
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continued from previous page

Symbol De�nition

UHF ultra high frequency

ULA uniform linear array
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