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Chapter 1

Introduction

Synthetic Aperture Radar (SAR) is a radar that employs a continuously displacing (moving)
aperture to create a synthetically long aperture, one that is much larger than the antenna’s
physical dimensions. SAR has traditionally been used in remote sensing applications for terrain
imaging in all weather conditions. Other applications include:

e Target detection in dense foliage

e Surface displacement

e Surface parameter estimation

e Tomography using Polarimetric SAR

A classic and highly publicized example of SAR’s capabilities is the mapping of planet Venus’s
surface by the Magellan probe. This was accomplished with a SAR/Altimeter combination. The
SAR subsystem operated at 2.385 GHz and 325 W peak power, with range and cross-range
resolution of 150 m [1]. It was able to peer through a dense C0; atmosphere, where optical
equipment would be rendered useless. Some photos are shown in figure 1.1.

The primary application of SAR has been for terrain imaging and mapping. Other well known
SAR modes are:

o Differential SAR Interferometry (DInSAR).
An application of DInSAR is for surface displacement measurements, which can be used
for earth-quake analysis, ground subsidence measurements and more.

e Polarimetric SAR
This kind of SAR uses polarimetric SAR data to characterize surface type (wheat field,
forest, surface minerals, etc.).

o Combined Interferometry and Polarimetric SAR
This could be used for 3-D reconstruction of terrain or some other surface, otherwise known
as Tomography.

1.1 Historical Overview

The precursor to SAR, Side-looking Aperture Radar (SLAR), was conceived in the 1950’s [5].
It was recognized that instead of using a rotating antenna for azimuth coverage, an antenna
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Figure 1.1: Magellan Probe (left). SAR Image (left). Photo Credits: NASA

could be fixed to the fuselage of an aircraft. The moving radar attains azimuth (or cross-range)
coverage in this way. The sharper the beam is in azimuth, the better azimuth resolution is
attained. A particularly high resolution imaging capability was attained by the AN/APQ-97
which utilized a pulse width much shorter than a micro-second and an operating frequency of
35 GHz that achieved a very narrow azimuth beam. A resolution of 10-20 meter was attained
in both dimensions. SLAR attains along-track resolution merely by a narrow beam in azimuth
and, therefore, makes no use of coherency [5].

In 1951 Carl Wiley, who at the time was employed by Goodyear Aircraft, described in a
technical report a concept that he termed “Doppler Beam Sharpening” (DBS) [13]. The idea is
to employ Doppler information on stationary targets for the purpose of increasing cross-range
resolution [14].

In 1953 a team of researchers at the University of Michigan launched Project Michigan at
the sponsorship of the U.S. Army Combat Surveillance Agency. It is in this setting that the
idea of creating an extremely long “synthetic aperture” was conceived [6]. The first strip map
was produced by Kovaly and co-workers of a section of Key West, Florida [9]. This early image
did not employ pulse compression, nor was azimuth focused. However, despite the resulting
low resolution nature of the strip map, it correctly depicted the water boundary, and other
geometrical features of the scene being observed.

In 1958 Project Michigan produces the first focused SAR image of Fort Huachuca area and of
Tucson, Arizona [6]. Digital recording techniques were not adequate at the time, and a recording
that used photographic film was implemented. First operational airborne system — AN/UPD-1

... Continue with Historical Overview
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1.2 Literature

The literature is replete with material on SAR. General books on radar usually dedicate a chapter
to SAR.

Recent years have seen a greatly expanded interest in SAR, and a tremendous growth of SAR
technology and applications. With this came a plethora of literature dedicated to SAR. Both
general books on SAR are available, as well those geared to a specific application or points of
interest. Some books are geared more towards the engineer who is concerned with the hardware
and data acquisition systems as well as the low-level signal processing, while others are geared
more towards the image processing community who are concerned with producing images from
both raw and processed SAR data.

In the evolution of SAR, certain landmark and key publications have come forth.

A book of compiled articles by John Kovaly, one of the leading engineers in the early devel-
opment of SAR, can be found in [10]. The articles are categorized into 7 chapters, including a
chapters on performance, processing and applications. He prefaces with a substantial introduc-
tion to SAR, and provides a short introduction to each chapter.

An early description of the work on SAR by the Michigan group led by Cutrona can be found
in a 1961 article by Cutrona et al [6]. The authors begin with a brief theoretical framework of
SAR and derive the optimal azimuth resolution. The authors proceed to present the efforts of
the Michigan group in realizing a roof mounted prototype in 1953, followed in 1957 by a C-46F
aircraft flown prototype SAR using optical processing. They also describe the development of the
AN/UPD-1 and present accompanying high resolution SAR stripmaps obtained by this radar.

In a 1962 paper [12] by Sherwin! and other members of the group, the early development
of SAR is presented. The paper begins with a summary of the theoretical work conducted by
Wiley and some of his key contributions to SAR. The authors proceed to describe the Michigan
group’s independent work on SAR, detailing key properties of SAR as they were unfolded by
Sherwin and others, such as the interpretation of SAR as a long synthetic array, and the use
of focusing to achieve range independent resolution. The paper also provides stripmaps images
produced in 1953.

In a mostly tutorial paper [2], Brown? examines SAR on a deeper level. For instance, he
refrains from taking for granted such concepts as resolution and its commonly accepted definition
as one over the bandwidth, but rather works with a more general definition, and illustrates
how the accepted definition derives from it. He also justifies why resolution is a more effective
performance criteria in imaging than, say, mean-square-error analysis. The paper begins with
a CW analysis of SAR (single range bin), followed by a derivation of the optimal matched
filter. It then proceeds to extend the theory to pulsed SAR (multiple range bins) and resulting
ambiguities. Optical processing is considered next as a suitable implementation of the image
processor. A natural extension of the theory is that of “imaging of a rotating target field”,
more commonly known as Inverse Synthetic Aperture Radar (ISAR). The paper finalizes with
a thorough treatment of phase errors, culminating with an expression that relates mean-square
resolution to the phase-error spectrum and applied taper.

An excellent 1969 tutorial paper by Brown and Porcello [3] provides a thorough overview of
SAR. It begins with a theoretical overview of SAR (including ISAR). It highlights the difference
between focused and unfocused SAR, and describes optical processing. ...

A 1972 paper by Kovaly [9] introduces the idea of employing a space-borne SAR for high
resolution planetary mapping. He begins by noting a 1964 paper [11] that describes a preliminary
design of a radar system for mapping Venus by an orbiting spacecraft aimed at achieving a

IMichigan group director.
2 At the time of writing he headed the Radar and Optics Lab at the University of Michigan, Ann Arbor.
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resolution of 15-20 kilometers using conventional radar techniques. He then proceeds to elaborate
on employing a SAR system in place of the conventional radar to obtain high resolution imagery
of planetary terrain. Although the author provides a good overview of SAR principles it doesn’t
specifically address technological challenges that arise in a space-borne implementation.

A 1982 36 page article by Elachi [7] provides a comprehensive overview of spaceborne SAR,
and issues pertinent to SAR when deployed in space. He begins with spaceborne SAR princi-
ples, in which he treats among other things, ambiguities, and the effects of range migration?,
effects of the Earth’s rotation, orbit ellipticity, and space-craft attitude errors in the point target
response. He also addresses technological factors in the implementation and signal processing of
spaceborne SAR. The three satellite based SAR systems that had been deployed till that time
Seasat SAR, Shuttle Imaging Radar-A (SIR-A), Apollo Lunar Sounder (ALSE)?, are documented
in the article, with particular emphasis on Seasat.

A short book by J. Patrick Fitch titled Synthetic Aperture Radar [8] serves as a good intro-
duction to SAR. The author has in mind a cross-disciplinary audience, and as such, dedicates a
chapter and appendix to Radar and signal processing fundamentals, as pertains to SAR process-
ing. He provides an intuitive, yet mathematically rigorous treatment of the topics he addresses.
A particularly noteworthy feature of the book, is the description of the SAR processor software
(with included pseudo-FORTRAN code) as implemented for the Seasat mission. The book also
has an excellent treatment of optical SAR processing.

A highly recommended book by Curlander and McDonough entitled Synthetic Aperture
Radar: Systems and Signal Processing [5] provides a comprehensive treatment of SAR, which
includes basic theory, imaging algorithms, SAR flight system, SAR ground system, and SAR
data calibration.

Continue with other books...

3Range migration includes both range curvature and range walk [7].
4The ALSE was used for subsurface sounding of the lunar crust, rather than for surface imaging [7].
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SAR Basics

2.1 SAR Modes

SAR has three principal modes of illumination [4]:
e Stripmap
e Spotlight
e Scan

The basic method of illumination for each mode is illustrated in figure 2.1. The distinction
between these modes is in the manner in which the terrain is illuminated. In stripmap SAR,
the aperture beam can be either broadside (broadside stripmap), as illustrated in the figure, or
squinted (squinted stripmap). In the stripmap mode the beam direction stays fixed with respect
to the the aircraft. As such, an elongated strip of terrain is illuminated during the observation
interval.

In spotlight SAR the beam direction is continuously rotated, so as to illuminate the same
patch of terrain. The advantage of spotlight mode is the finer azimuth resolution that is attained.

Stripmap mode is utilized when wide swaths of terrain are to be mapped at reduced azimuthal
resolution. Spotlight mode is utilized when localized swaths of terrain are to be mapped at finer
azimuthal resolution.

Scan SAR is the most versatile mode, allowing arbitrary stretches of terrain to be illuminated.
Because of the complexity of both the scanning mechanism and post-processing, scan SAR is not
as commonly implemented as the other modes.

2.2 SAR Geometry

In order to discuss what happens in a SAR system, it is necessary to understand the geometry of
the SAR system with respect to the terrain being mapped, as well as define geometrical quantities
that will be used to formulate and quantify SAR behavior. For the sake of simplicity, broadside
stripmap SAR and a flat Earth are initially assumed. An analysis of a SAR system based on the
flat Earth approximation is sufficiently accurate for sensors carried aboard an aircraft. Analysis
of an artificial-satellite based sensor, a topic that will be dealt with further on, requires a curved
Earth model.
The simplified geometry is illustrated in figure 2.2.

7
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Spotlight SAR

Scan SAR
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Figure 2.1: The three conventional SAR modes.
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Figure 2.2: Basic SAR geometry (left). A cut in cross-range (right).
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The sensor path is parallel to the Earth in the direction of flight, at height h, above nadir.

Nadir is the point on the ground nearest the aircraft. For the flat Earth geometry the line
connecting nadir and the aircraft is orthogonal to the ground.

The number of pulses transmitted is denoted Mgat
The time interval over which data is collected is denoted Ty,
The aperture beamwidth in both azimuth and elevation are denoted 6, and 6., respectively.

The beam footprint is the patch of terrain illuminated by the mainlobe of the physical
aperture. The mainlobe is bounded by the azimuth and elevation beamwidths.

The LOS is a line connecting the center of the aperture to the target. Since the LOS moves
together with the aircraft, it is a function of time. The magnitude of the LOS is known as
slant range, and denoted R, The unit vector in that direction may be denoted Rj.

The target in SAR is a hypothetical point on the terrain that will eventually correspond to
a pizel in the pulse-compressed image. Unlike with conventional radar, where the terrain is
generally considered clutter, and the more it is suppressed, the better, in SAR both back-
ground terrain and outstanding objects factor in as targets. Different regions of the terrain
and objects exhibit differing degrees of electro-magnetic reflection, and that determines
how bright a given patch of terrain or object will appear in the processed SAR image.

The projection of the slant range vector onto the ground is denoted ﬁg. Its magnitude,
denoted Ry, is the ground range.

The depression angle is . For the flat Earth geometry being assumed the angle between
the ground and LOS, known as the grazing angle, is also 1. This is a valid assumption for
some airborne SARs, but not for spaceborne SAR.

The angle between the axis labeled h, and the LOS is called the look angle and denoted
v. Note, for the simplified geometry presented v = 90° — 1.

2.2.1 Slant range, ground range and range resolution

With these definitions it is now possible to obtain the minimum and maximum slant range:

he ha

R min = T A ey RS max I TS
s(min) cos(y —0./2) (max) cos(y +6./2)

The corresponding ground ranges are:

Rg(min) = hg tan(7 - 06/2), Rg(max) = hg tan('y + 96/2)

The slant range to the center of the footprint is:

s cos(7)

The resolution in slant range is:
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delrg.tex

slargeomsideview.tex

Figure 2.4: SLAR - side view.

Since the direction of propagation is in the direction of the slant, the range resolution in that
direction is independent of range.

The ground range resolution, AR, on the other hand is range dependent. The geometry used
to derive an expression for AR, is depicted in figure 2.3. By definition the circular wavefront
radiating from the source antenna is perpendicular to both slant range lines. However, since the
separation between slant range lines is small, the curved wavefront shown cutting through the two
slant ranges can be approximated as a straight line, making a right angle with the longer slant
range. Furthermore, assuming a flat Earth geometry, the grazing angle is merely the depression
angle, . Thus, the side adjacent to ¢ is ¢7/2 and the hypotenuse is AR, and therefore:

et /2

cos() ~ Tt
9

Solving for range resolution:
cT
ARy w 5 sec(v) = AR sec(v))

Clearly, ground range resolution decreases with range, asymptotically approaching that of slant
range

AR, =<
2

as 1 approaches zero. This is further illustrated in figure 2.4.

Since unprocessed SAR data is based on slant range geometry, the nonlinear relationship
between slant range and ground range has to be accounted for when constructing an image from
the SAR data in (rectangular) Earth coordinates.
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2.2.2 Cross-Range

In discussing SAR, the azimuth dimension is typically referred to as cross-range. We first con-
sider a conventional side-looking aperture radar (SLAR). In SLAR, the antenna broadside is
perpendicular to the flight path. The cross-range resolution is range-dependent and expressed

as:
Az ~0,R,

We now wish to relate the cross-range resolution to antenna dimensions and operating wave-
length.
For a real planar antenna operating at the diffraction limit, the peak gain and antenna area,

A, are related to each other by:
G- drA  4AnL,L.
PP
In the second equality, the area is expressed as the product of L, and L. — the horizontal
(azimuthal) and vertical (elevation) dimensions of the antenna, respectively.

Another relation governing peak gain is:

47
G
* 0.0,
Equating the two expressions:
4rL,L. 4w A2
ZTame 70 0,0, = ——
N 0.0, LoL.

For a rectangular antenna the azimuthal and elevation beamwidths are independent, and can
therefore be separated as follows:

A A
0,=—, 0.=— 2.1
«=7 e (2.1)
Substituting back into the expression for cross-range resolution, we have:

A
AX ~0,Rs = L—RS

a

From this expression we conclude that cross-range resolution is proportional to wavelength and
range, and inversely proportional to antenna length.

2.2.3 Synthetic Antenna

Next we consider a synthetic antenna. A synthetic antenna is created when a real antenna
traverses a distance L, intermittently transmitting pulses, and the rest of the time listening for
echoes. The distance of travel between pulse transmission is akin to the inter-element spacing of
a phased array.

The half-power beamwidth of a horizontally oriented linear untapered phased-array is:

where L is the array length. For a synthetic array of synthetic length L, the beamwidth is:

1A

0, = - 2.2
> 1. (2.2)
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The factor of a “half” can be explained as follows. In a real array phase shifts during transmission
affect the direction in which energy is transmitted, but have no bearing on the spatial coherency
of the returns, and therefore on the radiation pattern at receive. In contrast, in a synthetic
array, phase-shifts on both transmission and reception have bearing on the spatial coherency of
the returns, and are, therefore, both factored into the effective radiation pattern.

Concerning a single target, the length of the synthetic array is the distance the aircraft travels
with the target contained within its beamwidth. This distance is range dependent and equal to:

Ly=0,Rs =R, (2.3)

The second equality substituted for beamwidth as taken from equation 2.1.
The cross-range resolution of the synthetic aperture is thus:

AX,;=0,R,
1A
= — 7RS
2 L,
1A
I a— A T
2 LA R,
1
=3 La
The second line substitutes for synthetic beamwidth as taken from equation 2.2. The third line
substitutes for synthetic aperture length as taken from equation 2.3. The result demonstrates
that cross-range resolution is governed solely by the aperture length of the on-board antenna,
and is not range dependent, as is the case with a real antenna.

In fact, the smaller the antenna the better the cross-range resolution. This last fact is a
bit misleading, since a smaller antenna results in a larger half power beamwidth, which means
the plane traverses a larger distance with the target in its view. So indeed, the resolution is
improved, but at the expense of a longer observation interval. There is a further limitation on
resolution that will be considered in a more detailed analysis to follow.

Example 1

The following example illustrates some of the SAR concepts covered thus far. As additional
theory is presented the example will be extended to cover additional aspects as well.

Considered is an air-borne strip-mode SAR flying at a height of 1 km. The antenna is 1
meter by 1 meter, and transmits at a center frequency of 10 GHz. The antenna is side-looking
with boresight positioned at a 10° depression angle. The transmitted waveform is LFM with a
compressed pulse width of 10 nS.

e Determine both slant and ground ranges at the center of the beam as well as the extremities.

e Determine both slant and ground resolution at the center of the beam and extremities.

Determine the cross-range resolution of a conventional SLAR at the beam center.
e Determine the theoretical cross-range resolution.

e Sketch a cut in cross-range of the flight geometry and illuminated patch.
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Solution
The wavelength is:
3x10% m/s

-0.03
10 GHz m

A=c/fe=

The look angle is:
~v=90° -4 =90° - 10° = 80°

The azimuthal beamwidth is:

6 = 2 = Q03 63 vad = 1.7189°
L, 1m
Slant range at center and extremities of footprint are:
1k
R, = Mo o LEMgos0m
cos(y) cos(80°)
he 1k
Ri(amin) - o - 5.308 ki
cos(y—0./2) cos(80° —1.7189°)
ha 1k
Rs(max) - =6.295 km

cos(y + 0./2+)  cos(80° + 1.7189°)

Ground range at center and extremities of footprint are:
R, = hgtan(y) = (1 km)tan(80°) = 5.671 km
Ry(min)y = hatan(y—0./2) = (1 km)tan(80° -1.7189°/2) = 5.213 km
Ry(max) = hatan(y+6./2) = (1 km)tan(80° +1.7189°/2) = 6.215 km

Slant range resolution is independent of the position within the beam:

8
ARS:%T: 3x10 m2/s(10 nS) 15m

Ground range is:
AR, w % sec(1) = AR, sec()) = (15 m)sec(10°) = 15.231 m

AR g(min) ARgsec(t) —0./2) = (15 m)sec(10° — 1.7189°/2) = 15.193 m
AR ARgsec(y +0./2) = (15 m) sec(10° + 1.7189°/2) = 15.274 m

ed

R

g(max)

The cross-range resolution of a conventional SLAR at the center of the beam is
AX =0,Rs=(0.03 rad)(5.759 km) = 172.7 m

The theoretical cross-range resolution is

AXS:ELQ:E(lm):Em
2 2 2

and is independent of the beam position.
The cross-range cut is shown in figure 2.5.




14 CHAPTER 2. SAR BASICS
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Figure 2.5: Cross-range cut of geometry in example 1.

Va

offbroadsidescatres.tex

Figure 2.6: Illumination geometry for two off-broadside scatterers.

2.3 Relationship Between Doppler Shift and Cross-Range

In the previous analysis it was claimed that SAR can achieve enhanced cross-range resolution
with a theoretical limit of L,/2. We now proceed to demonstrate the connection between cross-
range and Doppler shift, and how this limit on cross-range resolution is obtained.

Consider two off-broadside scatterers within the illuminated swath that are captured by the
radar beam, as illustrated in figure 2.6. The two scatterers are indicated in the figure by two small
filled circles. The cross-range resolution, dx, is defined as the minimum separation between the
scatterers for which the radar can distinguish between them. For simplicity, the aircraft velocity
is assumed perpendicular to antenna broadside, in which case there are no velocity components
in the y and z direction.! The aircraft speed is denoted v,. For a flat Earth approximation the
relative velocity between a scatterer and aircraft is also v,.

Next, consider one of the off-broadside scatterers, as illustrated in figure 2.7. Its cross-range
coordinate is denoted x. Since the aircraft is in motion relative to the scatterer a Doppler shift

IThis assumption is approximately valid under mild winds conditions. A more general treatment, however,
would consider other velocity components imposed on the aircraft.
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Va

offbroadsidescat.tex

Figure 2.7: Illumination geometry for a single off-broadside scatterer.

is incurred for any off-broadside scatterer, given by

_ 2ugsin(0)  2v.x
N

Ip (2.4)
where sin(6) = z/R was used to obtain the second equality.
The cross-range coordinate of the scatterer, x, can, thus, be obtained from the Doppler

T = pr (25)

- 20,

Since scatterers with slightly varying angles produce slightly varying Dopplers, they appear
distinguished on a slow-time? spectrogram.

This is illustrated in figure 2.8. In this example, an aircraft flying at 100 m/s transmitting
at wavelength 0.03 m, transmits 1000 pulses at a PRF of 2000 Hz. Three scatterers (with a one
degree tapered spread) were placed at slant range 10 km and angles -7, -2 and +4.5 degrees
relative to boresight. Their Dopplers were calculated using equation 2.4, and 1000 raw samples
were generated for the range gate corresponding to 10 km. The spectrogram shown in the figure
is the DFT of those samples. Equation 2.5 can be used to map between the Doppler frequencies
where the peaks on the spectrogram occur and the corresponding cross-range coordinates. For
instance, the leftmost peak occurs at —815 Hz. It cross-range coordinate is thus,

R RoA (10 km)(0.03 m)
_ . . ~815 Hz) = 122
T P 5 TP T T 00 sy o1 He) = 1220m

It is important to note that the above analysis doesn’t take into account three important
factors which relate to platform motion.

2Slow-time is a term used to contrast with fast-time. Fast-time considers return samples within a single PRI.
Slow-time considers samples from the same range gate, but taken across PRIs. The Doppler induced phase shifts
between successive pulse returns can be analyzed by taking the DFT of the collection of slow-time samples.



16 CHAPTER 2. SAR BASICS

egspectrogram.tex 1000

Figure 2.8: Illustration of how a slow-time spectrogram can be used to profile scatterers in
cross-range. For MATLAB™/Octave code see appendix A.3.

e As the radar transmits pulses it doesn’t remain in the same position. In the case of the
example the radar is displaced by 50 meters from when the first pulse is transmitted and
the last. This has the effect of adding a quadratic component to the relative phase of
successive pulses. This will be dealt with in section 2.4.

e Furthermore, as the platform travels the return for a given scatterer may drift into a
different range gate because the slant range from platform to scatterer changes. This effect
is known as range migration, and will be dealt with in section ?7.

e The distance used in mapping between Doppler and cross-range was Ry, rather than R.
This is because R itself is a function of 0, or equivalently, x, and thus z effectively appears
on both sides of the equation, making it more convenient to approximate R » R.

In conclusion, the above computation only yields an approximate value for the cross-range co-
ordinate, and may produce a loss in gain if range migration takes place. SAR processing that
limits its observation interval in such a way that none of these effects are significant is called
Unfocused SAR. Although, processing complexity is greatly reduced, such a SAR cannot achieve
the maximum cross-range resolution of L,/2, derived earlier. Unfocused SAR is dealt with in
section 2.4.1

2.3.1 Iso-Doppler Contours

Figure 2.9 illustrates the illumination geometry when platform motion is taken into account. The
full implication of platform motion on a scatterer’s Doppler profile will be investigated later. At
this juncture we just wish to derive a relationship between range rate and cross-range that takes
it into account.

The platform position is shown at time s. The nadir at time s is given by cross-range
coordinate v,s. The relationship governing slant range at time s can be determined easily from
the geometry depicted in the figure:

R? = (x—vas)2+R3 +h2

where R, is the ground range coordinate of the scatterer.
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Figure 2.9: Illumination geometry for an off-broadside scatterer with platform motion taken into
account.

The range rate may be derived from the above equation:

2
dRT 2R R =-2(x —048)q
ds
= (T —ve8)v,
R= " "av)a
- R
At time zero (s =0) the echo delay, slant range and Doppler are respectively,
2
o) = 2RO (2.6)
c
R*(0) = &*+R.+h, (2.7)
QR(O) (z-v48)v, 5
R - T
0 — _ = — 5=0 = — @ 2.8

Equation 2.7 derives directly from the geometry. Equation 2.8, in which the range rate equation
derived above was used, can be solved for R(0)

R(0) =

B 21,
Afa(0)
and substituted back into equation 2.7 to yield,

2z 2
- @) =2+ R+ 02
( )\fd(o)) g

9 2
2 Ya _1l_p2_2
T ((/\fd(o)) 1) Ry =h,
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Figure 2.10: Iso-Doppler contours.

This equation, when Doppler is treated as a constant, describes a hyperbola in the ground-
range/cross-range plane as illustrated in figure 2.10. The above equation can also be expressed

as:
20, 2
Ry=+ x2 |:()\fd(())) —1]—/7%

In the figure only the part of the hyperbola corresponding to the + of the squared-root is shown.
The minus appears on the other side of the aperture. However, since the aperture only illuminates
one side of the plane, it is irrelevant.

It is our goal to demonstrate that a single scatterer can be associated with a specific Doppler,
and at this point there is a locus of scatterers (i.e. those that lie on the hyperbola) associated
with a single Doppler frequency, fp(0). We, therefore, need another piece of information, and
that is an associated range gate. We note that only two scatterers will intersect the constant
delay contour, which is a semi-circle about the origin. The constant delay contour is the locus
of scatterers which have the same slant range, R(0), or alternatively, the same echo delay and,
are thus, within the same range gate.

The constant delay contour intersects the iso-Doppler contour in two places. The intersection
in the positive quadrant corresponds to positive Doppler, as the aircraft travels towards the e
scatterer. The intersection in the negative quadrant corresponds to negative Doppler, as the
aircraft recedes from the x scatterer.

It has now been demonstrated that in a given range gate there is a unique mapping between
Doppler and cross-range. The next step is to demonstrate what is the limit in resolution that
can be obtained in cross-range. That is, how close can two scatterers be in cross-range and still
be separable?
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Figure 2.11: Illustration of dwell time on scatterer.

2.3.2 Derivation of cross-range resolution limit

At this junction we are ready to derive the aforementioned limit on range resolution for strip-
mode SAR. We begin recalling the relation between cross-range and Doppler (equation 2.4).

20,
fp= i)

Thus, the Doppler resolution and cross-range resolution are related by

20, Az
Afp =2 2.
=222 (29

Now, Doppler resolution depends on the time extent of the observation interval over which the
Doppler frequency is being observed, say S.

1
Afp=— 2.10
fp 5 (2.10)
Clearly, the longer the observation interval, the better Doppler resolution that can be attained.
We, therefore, choose the longest possible dwell time on the scatterer, that is, the time extent
in which the scatterer is illuminated by the beam footprint. Figure 2.11 illustrates the beam
entering and leaving the scatterer. The distance traversed by the platform during this interval is

Sv, = RO,

where R is the slant range at closet approach and 6, is the beamwidth in azimuth. The equality
between the left and right sides of the equation is apparent from the figure. Solving for S we
have:

Oa
S = R
Va
Substituting back into equation 2.10 we have:
1 1 v Ly
Ao L _ Yo _ Lal 2.11
Ip= 5= = ko, = R (2.11)
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We utilized equation 2.1 in the last equality.
We can now solve for cross-range resolution using equation 2.9

Afp = Ape A Ap o BA _
Ip=—p5— =The=g - Afp=g-

:RA RMA Lyv, % (2.12)

This is the result obtained earlier in section 2.2.3.

2.3.3 Practical limit on cross-range resolution

In the preceding section it was shown that cross-range resolution is half the azimuthal antenna
length, irrespective of other system parameters. If so, why not arbitrarily reduce the antenna
length in order to attain arbitrarily good cross-range resolution?

The first and most obvious answer can be inferred from figure 2.11. Recall, that in deriving
the cross-range resolution limit, we chose the longest possible dwell time on the scatterer, which
provided the best Doppler resolution, which in turn provided the best attainable cross-range
resolution. Maximum dwell time on a scatterer is given by:

_0.R

Vg

S

If the antenna is shortened, the beamwidth is widened (i.e. 6, is made larger), and thus, S is
increased. As 6, — oo, S — oo. Thus, the amount of dwell time available will limit attainable
cross-range resolution.

There is yet another factor that will limit us in terms of achieving infinite cross-range reso-
lution. The narrower the antenna dimensions, the less power density we can achieve. Refer to
[5] for a detailed derivation.

2.4 Quadratic Phase and Linear Doppler Spread

Till now we have talked about a scatterer’s Doppler as though it was constant throughout the
observation interval. However, when choosing a large observation interval, the Doppler inevitably
changes throught the collection interval. Figure 2.11 illustrates the aircraft approaching the
scatterer at the first half of the dwell interval, and receding in the second half. Thus, a positive
Doppler is incurred in the first half, and a negative Doppler in the second half. Furthermore, since
the aspect angle with respect to the scatterer changes throughout the flight path, a constantly
changing Doppler results. Note, when the aircraft is perpendicularly aligned with the scatterer
(i.e. in the center of the dwell interval) the return Doppler is zero, since the aircraft is neither
approaching nor receding from the scatterer.

In this section we demonstrate that for the given geometry a quadratic phase is induced in
the pulse returns, which in turn produces a linear Doppler spread throughout the observation
interval. Two approaches are given on how to contend with the quadratic phase component.
The first, unfocused SAR, attempts to minimize this component at the expense of cross-range
resolution. The second, focused SAR, attempts to remove the quadratic phase during processing,
and, thus, achieve full cross-range resolution.

2.4.1 Unfocused SAR

Ideally, when processing SAR data we wish to remove the quadratic phase component, retaining
only a linear component. This turns out to be computationally expensive, as the quadratic
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Figure 2.12: Geometry used for deriving a relationship between slant range and cross-range.

phase progression is different for each range cell, and for each scatterer within a range cell the
quadratic phase progression must be removed separately from the others. The problem is further
compounded, if range migration takes place, and the scatterer’s returns are spread over a few
range cells.

One approach is to limit the observation interval per scatterer to that which the quadratic
phase component is negligible, and thus the Doppler can be considered constant throughout
the interval. A simple DFT operation can then be used to locate targets in cross-range. This
approach is called unfocused SAR. However, since the observation interval is relatively short,
Doppler resolution will be coarser, and thus, cross-range resolution. Nonetheless, a significant
improvement may still be attained over SLAR (which makes no use of Doppler).

Relating between slant range and cross-range

Consider figure 2.12. The antenna is depicted at arbitrary cross-range coordinate, x. The cross-
range coordinate of closest approach is denoted xzy. A third coordinate is defined in the center of
the observation interval, and denoted x.. In order to relate between slant range and cross-range
we will utilize a Taylor expansion about z..

oo _ c n A n
R= ZAnM:Ao+A1(x—mc)+—2(x—xc)2+..., where A, = —R(z)
for n! 2 dxn r=z.
The first two Taylor coefficients are computed as follows:
AO = R(Z‘C) = Rc
d d 5 5 Lo 2\"3
A = aR(ac) . = a\/RO+(CU—:100) . = 5(R0+(:r—:r0) ) 2(x - xg) .

Te—T0 Te— X0

\/R(2)+(17C—.T0)2 - R.
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where
e R is slant range from antenna center to scatterer.
e R, is slant range when antenna projects onto z..
e Ry is slant range when antenna projects onto xq, that is, slant range of closest approach.

The third Taylor coefficient is computed as follows:

12 a2 \/272 d 1, , 2\~ 3
A2 = @R(SIJ) . = @ RO + (.’L‘ _xO) . = ai (RO + (1'—1'0) ) 2($ _xO) =T,
1 -3 z
= =5 (RE+ (0= 20)?) 2 20 - w0) (0~ w0) + (R} + (w-20)%)

T=T.

N|=

_3 —

= (R% + (xc - xO)Q) : (xc - 1‘0)2 + (Rg + (xc - J30)2)
_ 4 (we-m0)?’+R? R}
= Rc3(xc _'TO)Q +Rc1 = ]33 = R7g

Substituting for the coefficients, the Taylor series becomes:

2
0

2R}

Te— o

R.

R=R.+ (x-z:) + (z—2c)% +--

The next step is to compute the phase of the return. Phase is proportional to the two-way
distance traveled by the wave:
6= 27r(fR)
The minus sign appears because the signal arrives at a delay rather than in advance.
Note, it is assumed that the two-way travel distance is 2R. This is not completely accurate,
as the travel distance back, will, in general, be different than R, since the platform continues to
move as the wave makes its way back to the antenna. However, for platform speeds and distances
encountered in airborne SARs it is usually sufficient to approximate the return trip as R.
Substituting for the truncated Taylor representation of R, the phase becomes:

(2.13)

2
27 -2 (Rc + —3”“];’”0 (x-z:) + %(az - :cc)Q)

A
47 Te— To R(Q)
= T Rc —de Y
) ( + . (z—xc)+ 2R

(x—xc)Q) (2.14)

Higher order terms of the Taylor series expansion have been dropped, since they are usually
negligible. Therefore, we are left with a quadratic form for the relative phase of the return.
Relating between Doppler and cross-range

With the phase at hand, it is now possible to obtain an expression for Doppler. However, since
the Doppler is quadratic, there will be a Doppler spread, as will soon be demonstrated.
The instantaneous Doppler of the return is defined as the derivative of the phase:

fo = o0 = (Lo0)(5)
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Figure 2.13: Illustration of Doppler spread induced by scatterer.

Note, the invocation of the chain rule. Substituting for ¢ we obtain:

1 4\ d T.—Xg R dz
o = 27r( A)dx(R+ R, () * oy xc))(dt)

_2 xc—x0+R7%(I_x) (@)
A R, R} )\ at

For narrowbeam SAR the approximation R, ¥ R. can be made. Furthermore, % is simply the
aircraft speed, v,. With this,
To—Xo T —Te 20,
N—— + =——(x-=z 2.15
fo )\( Ro Ry )a ko (0 (2.15)

We see from this expression that Doppler is a linear function of cross-range. At the point of closest
approach, the aircraft is neither approaching nor receding from the scatterer, and, therefore, the

Doppler is zero:
2v,

fp (o) =—

Figure 2.13 depicts the linear relationship between cross-range and Doppler. The cross-range
axis refers to the cross-range coordinate of the aircraft, whereas zy refers to the cross-range
coordinate of the scatterer. Af denotes the Doppler spread of the scatterer within the SAR’s
field of view.

How were the limits of the Doppler spread shown on the graph attained? To answer this
question we must consider the limits on the cross-range where the scatterer is within view of
the radar. Recall figure 2.11 showing the scatterer entering and leaving the radar’s beam. It is
redrawn here as figure 2.14 with emphasis on cross-range. From the figure it is clear that when
the aircraft is at coordinate xg — %OQRO then the scatterer is just entering the beam, and when
at g + %QaRO then the scatterer is just leaving the beam.

We first compute the Doppler as the scatterer enters the beam:

2V 2v
min) = 7 Y5 = - 9 R
fD( ) /\R (3: x(]) ro- 10, o )\RO( 0~ CCO)

(ffo -x9) =0

20,
/\Ro

(** 0)——*

Likewise, the Doppler as the scatterer leaves the beam is

Ua

fD(max) = ?
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Figure 2.14: Illustration of scatterer entering and leaving the radar beam, and corresponding
cross-range coordinate of aircraft and scatterer.

The Doppler spread is thus,
Vq

La

For the parameters of example 1 and an aircraft flying at 100 m/s, the Doppler spread is:

A.f = fD(max) - fD(min) =2

1
Af=2le o00ms oh0 g,

L, 1m

This means a scatterer will appear spread across 200 Hz on a spectrogram. Recall from equation
2.11 that full Doppler resolution should be

_ Lave (1 m)(100 m/s)

_ - = 0.5788 H
RoN  (5.759 km)(0.03 m) z

Afp

A focused scattered should only have a spread of 0.5788 Hz, and yet because of the quadratic
phase component, its Doppler spread is 200 Hz.

In unfocused SAR we wish to keep the processing simple (that is we wish to have the spec-
trogram be our processing), so we put up with the Doppler spread, except we limit it by limiting
the dwell time, as mentioned earlier.

Typically, the deviation of the phase due to the quadratic component (as taken from equation
2.14) is limited to w/4:

4t R?
< ﬁ(x —z)?<m/4

We proceed to express the inequality as follows:

22—\ ——<r<x A\ — (2.16)
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We define X as the range of x’s over which the SAR will focus on for a given scatterer, that is,
those x’s for which the quadratic phase deviation satisfies that above inequality. The assumption
is that within X the Doppler doesn’t deviate significantly.

AE-(VE)E

The observation/integration interval of the unfocused SAR is thus,

ARy
X 2

Va Vq

Suf

Note, that variations of the unfocused SAR resolution formula exist in the literature. The
differences are in what is deemed acceptable quadratic deviation. For this derivation 7/4 was
used.

Recall the relationship between Doppler resolution and cross-range resolution (equation 2.12),

AQZ = Ri)\ . AfD
20,

Using Afp = Sif we obtain the cross-range resolution

RA 1 RA v, ——
= — = — = )\ 2
v 20 Sut 24 \/TRO Ro/
2

Note that Az = X. It should be noted that the resolution is no longer range dependent, as in
the limiting case.

Example 2

Compute the resolution obtained in unfocused SAR, using parameters from example 1 and a
scatterer at the center of the beam footprint.

Solution:

The scatterer is at a slant range of Ry = 5.759 km (see example 1). The cross-range observation
distance satisfying inequality 2.16 is

¥ \/)\1;20 _ \/(0.03 m)(25.759 km) o0

This is also the cross-range resolution of the unfocused SAR,

Az =X =929 m

The observation interval on the scatterer is

g X _929m o0 o
M e 100m/s
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Figure 2.15: Tllustration of excess (quadratic) phase that must be compensated for, in order to
remove the linear Doppler spread.

2.4.2 Focused SAR

In focused SAR the excess phase progression that results in a changing Doppler profile as the
footprint traverses the target is compensated for and canceled.
Figure 2.15 depicts the antenna at two positions along its flight path.

e At the first position the antenna is broadside to the scatterer, and thus the Doppler is zero.
The slant range is the smallest it will be with respect to that scatterer, and denoted R.

e In the second position depicted the antenna has moved forward along the flight path such
that the scatterer is receding. The slant range is now Ry + AR.

The increased slant range between antenna and scatterer manifests itself as increased phase with
respect to broadside. This relative phase is given by
AR AR
Ap=221)— =4dn——
6=202m) =" = 4n =
The factor of “2” accounts for the two-way travel of the radar wave.

Also depicted in the figure is the iso-phase contour, a tilted semi-circle. Any point on the
iso-phase contour is at a distance Ry from the scatterer. If the flight path is coincident with this
contour, the Doppler would be zero through out the collection interval.

The objective of a focused SAR algorithm is to compensate for the effect of AR, so that
there is no Doppler spread for a given scatterer. In order to arrive at the proper compensation
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we need to explore the relationship between AR and the cross-range coordinate of the antenna
platform. From the geometry depicted in the figure the slant range at broadside (position 1) is

Ro=1/h%+R2

The slant range at position 2 (which represents an arbitrary non-broadside position) is

R(x) = Ro+ AR =\/h2 + (x ~ 20)* + R2 = \/ R} + (1 - o)

Solving for AR we have

AR:\/R3+(I—$0)2—RO

We will now proceed to approximate this expression. At first we normalize AR with respect to
Ry.

_ 2
AR _ 1+(m) 1
Ry Ry

We then use a well known approximation

(1+a)!~1l+qga, a<x1

to yield

In the above approximation, the condition a <« 1 translates into |z — zo|? < RZ, or more simply
|z = zo| < Ryp.

Denormalizing, we obtain
(z = x0)?

AR~
2Ry

(2.17)
The relative phase is thus

AR (z - 20)?
Ap=4dn— »2x———
¢ =dm— w2

This result indicates that the phase progression of the incoming radar waves is quadratic with
respect to cross-range offset.

Example 3

Consider a SAR whose parameters are given in example 1 and a scatterer at the center of the
beam footprint. Additionally, assume:

e Platform velocity of 100 m/s
e PRF 2000 Hz

e 10,000 pulses are collected from the time the SAR is broadside to the scatterer.
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Figure 2.16: (Right) True AR and its approximation. Within the extent plotted the difference
is hardly noticeable. (Left) Approximation error of AR normalized to A. This is also the
approximation error of relative phase scaled by 2w. The vertical lines labeled “illumination
extent” indicate the beamwidth boundaries outside of which the scatterer at xg is no longer in
view of the antenna.

Plot the true AR and its quadratic approximation. Also plot the approximation error AR-ARpx
normalized to the wavelength, which is proportional to the approximation error of the relative
phase, A¢ — Apapx, by a factor of 27.

Solution

The PRI is
1 1

Fr 2000 Hz
After 10,000 pulses the radar platform has traversed

X = MT,v, = (10000)(0.0005 mS)(100 m/s) = 500 m

r=

=0.0005 mS

The left plot of figure 2.16 shows AR and its quadratic approximation as a function of
platform (cross-range) position during the 500 m span of data collection that takes place from
when the platform is broadside to the scatterer. The right hand plot shows the resulting phase
error between the true relative phase and its approximation. For MATLAB™/Octave refer to
appendix 77.

A vertical line on both graphs marks the illumination extent of the beam. That is, at what
platform cross-range position within the collection interval is the scatterer no longer within view
of the antenna. This would be half the cross-range beamwidth. Using the values computed from
example 1 we obtain

1 1 1
5 Rofla = - (5.308 km)(0.03 rad) = - (172.8 m) =86.4 m

Any data collected by the SAR beyond this cross-range offset is considered not to be of use for pro-

cessing the scatterer at xg. It is, however, useful for scatterers beyond x.
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We will now proceed to interpret the results of the example. The difference between true
slant range and its quadratic approximation appears negligible for the cross-range offset range
depicted. However, this is not very revealing, as what is important is phase error. This is because
the nature of the phase increase is what determines the nature of the Doppler spread. Since phase
is modulo 27 it is necessary for the phase error be much less than 27 over the interval of interest,
and this is what the right hand graph examines.

The right hand graph is that of range error normalized to wavelength, which is the same as
the phase error, scaled by 27. In order that the approximation should be valid the error should
stay well within a cycle of the wavelength, that is

= 7|AR_)\AR”X| <1

Equivalently, the phase error must be well under the phase wrap around value of 27

|A¢ — Adapx| < 27

AR — ARapx| < A

Clearly this is not the case for the entire data collection interval!

Recall, however, that the given scatterer under examination (i.e. at x = 0) is not necessarily
illuminated during the entire data collection interval. In fact we rely on the fact that for a
reasonably narrow beamwidth, only cross-range offsets that satisfy the approximation condition
will have the scatterer within view of the antenna. Referring back to figure 2.15, it is clear that
the scatterer has long left the illumination region of the antenna by the time the SAR is at
position 2, that is, if a narrow beam aperture is considered. In the example it is clear from the
right hand graph that phase error is negligible within the illumination extent of 86.4 m.

As a final note, it is necessary to mention that we only considered data collection from
position zy and beyond. For full SAR resolution, data collection should include the platform
both approaching the scatterer and receding from it. In the example we only showed the latter,
although it is clear that the graph would be symmetrical about the origin had we fixed the
collection interval to include both.

Removal of quadratic phase term

If the relative phase term is removed from all data collected over the illumination interval X =
0r Ry then full SAR resolution can be attained. When the compensated returns are coherently
integrated only a target at xg has been properly compensated and will be integrated coherently,
whereas targets at other distances will not integrate properly since the compensation applied to
them is wrong.

Of course, for each cross-range coordinate xy we wish to process, we consider the quadratic
phase progression associated with that cross-range, and remove it from the data. That is, we
treat each cross-range coordinate we are processing as the broadside coordinate, and remove
the relative phase from the data based on that. This is depicted in figure 2.17. This is a
computationally expensive procedure, since we are removing the phase from the data repeatedly,
each time considering a different part of the data as being the phase center.

Although in the figure the assumed scatterer locations being processed are depicted at dis-
tance from each other, attaining full SAR resolution means assuming scatterers separated by the
resolution limit L,/2, which can be on the order of a meter. A more detailed description of a
SAR processor is considered in the next chapter.

At this point we proceed to developed a matched filter interpretation for the optimal SAR
processor. The waveform of the uncompensated return (disregarding amplitude) can be expressed
as

r(z) = exp (jo(z))
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Figure 2.17: Illustration of the phase removal procedure in a focused SAR algorithm. Four
assumed scatterer locations along cross-range, marked “a”, “b”, “¢” and “d”, are to be processed.
For each assumed scatterer the quadratic phase removal has to be done on the data, with the
phase center of the data corresponding to the location of the airplane at the point it is broadside
with the assumed scatterer. If a scatterer is actually there, it will get integrated coherently,
whereas the other scatterers will integrate destructively, since the quadratic phase removal was
only done correctly for the assumed scatterer. This is repeated for each of the scatterers. That
is the quadratic phase is removed anew from the data for the second, third and fourth scatterers.
The cross-range illumination extent for each assumed scatterer location is shown at the bottom.
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where ¢ was given earlier in equation 2.13 as

27 (2R(x))
A
Note, the time component of the return exp(jw.t) is removed in the heterodyning process, and

only the relative phase is left.
Substituting for ¢ and subsequently for R we have

exp (—j 47TR;\(1‘) )

qs:_

r(x)

exp (—3‘477T (Ro + AR))

exp (—j4; (Ro + @72_}:;’)2)) (2.18)

red

In the second line R was broken down into the iso-range component (see figure 2.15). In the last
line we substituted the quadratic approximation for AR as found in equation 2.17.

When processing the return, we assume the presence of a reflecting scatterer broadside to
the antenna. We apply the following multiplicative compensation to remove the quadratic phase
component of the return

2
exp (JATAAR) ~ exp (i—PZ;(x - xo)z)

The compensation is applied as follows to yield

re(z) =r(x) - exp (jJ4TAAR) = exp (%Ro)

Note, the compensated return is no longer a function of the cross-range dimension. The com-
pensation makes it as though the radar platform were being flown in a circular path around the
scatterer. This circular path was referred to earlier as the “iso-phase contour” shown in figure
2.15. In fact, the compensation has resulted in the broadside scatterer having zero-Doppler, since
the Doppler waveform is now a constant, that is, exp (ﬂT"RO).

The Doppler waveform is the time derivative of the compensated return

d i4 d 14 d
fD:&exp(%Ro) d—exp(%Ro) x =0-v,=0

Following compensation, integration is performed.

y(t) = / exp(—Ro) dz = Xy exp(ﬂTﬁRO)

where Xy = 0, Ry is the cross-range extent of illumination afforded by the aperture on a broadside
scatterer for the given slant range. (see figure 2.14).3 Only energy entering the beam from the
broadside scatterer integrates in a completely constructive manner. All off-broadside scatterers
integrate in a partially constructive, partially destructive manner, as the compensation for those
scatterers leaves them with an uncompensated quadratic phase progression. The precise degree
to which energy from off-broadside scatterers becomes mixed with the constructively integrated
energy of the broadside scatterer, depends on the sidelobe characteristics of the compensation
filter.

3In practice, the return is a discrete waveform composed of data from multiple PRIs, and the integration is a
summation. Details will follow in the next chapter.
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Matched filter interpretation of a focused SAR processor

In forming a SAR image we are interested in more than just a single scatterer. To process a
swath of scatterers, the procedure is repeated for each location of an assumed scatterer, as was
illustrated in figure 2.17. This means a phase removal followed by integration for each scatterer
location. This procedure can be formulated as a correlation or matched filter operation, whereby
the filter is the compensation factor mentioned earlier

g(z) =exp (— '4;;];)7 lz| < %X@
The normalized correlator output is thus
1 re'+iX,
y(z') = X, /zuéxg r(z)g*(x-2")dx (2.19)

where the superscript asterisk denotes complex conjugation. In the expression, the return wave-
form, r(x), is being convolved with the conjugate of the matched filter g(x), or alternatively,
correlated with a shifted version of g*(z). Recall, the function g*(x) is the quadratic phase
compensation factor. When considering a scatterer at location 2’ we wish to make it the broad-
side scatterer. This is accomplished by shifting the quadratic phase compensation factor to that
location, as indicated by ¢g*(x — z') inside the integral.

The variable z’ refers to the location of an assumed scatterer. To process an entire swath of
scatterers, x’ is stepped up, and the correlation integral computed for each x’ in the sequence.

In practice, r(x) is not continuous, but rather consists of discrete samples from gated echos
of consecutive pulse transmissions. This will be dealt with in the next chapter.

Ideal response of the matched filter to a point scatterer

At this point we wish to compute the response of the quadratic compensation filter and integrator
to a point scatterer. This will give us an ambiguity function of sorts.

We place a single point scatterer at cross-range coordinate xy. Such a scatterer produces the
return (see equation 2.18)

A x—10)? 1
Tmo(m):exp(_:j)\(R0+(2]%OO)))a |$_$0|S§X0

The cross-range extent of the return is bounded by + Xy around the scatterer position due to the
beamwidth extent of the aperture. The quadratic compensation for an assumed location z’ is

. Ar (- ax")?
g () = exp (,7()

o1
-2l < =X
X 2R, ) v =o'l < 3K

Here too, the compensation filter is bounded by + Xy around the assumed scatterer location. This
is because we don’t wish to expend valuable computational resources for processing scatterer
energy that lies in the aperture’s sidelobes. Compensating r,,(z) with g, (z) and integrating
gives us (see equation 2.19)

W) =5 [ @) o

where a normalization factor Xy is applied to the correlation integral. The limits of the integral
can be divided into three regions:
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e Region I: 0 <z’ — 29 < Xy
In this region 2’ is to the right of x, and the overlap is as illustrated in the figure

Xo
n T
T Lo r TH

rgoverlap1.tex
The overlap bounds, which will serve as the limits of integration, are

1 1
$L=JJ,—§X9, I‘H=.’E0+§X9

e Region II: 0 < zg -z’ < Xy
In this region 2’ is to the left of xg, and the overlap is as illustrated in the figure.

Xy
7 x
Ty T ToTH

rgoverlap2.tex

The overlap bounds are

1 1
:IZL=:170—§X9, JIH=£17,+§X9

o |xo—2'| > Xy

In this region there is no overlap between r, (x) and g,,(x), in which case y(z) = 0.

Substituting for r and g into the correlation integral we obtain
1 [=zu Am (z - 20)? Ar (z-2")?
! — —-j— | Ry + ———— ——]d
y(z") Xej;L exp(J/\( 0 2R, el iy x

= Xioexp (_j%Ro) [mLH exp(—j—2§20 [(m—m0)2 _ (gc —x’)z]) dx

We'll reduce the argument within the exponential as such:

(z—20)% - (- 2)? z® - 2zox + x5 — (2 - 22"z + 27)
= 2(a' —xo)x - (2 - x])
= 2(a' —x0)x - (2" + 20) (2" - 20)

= 2(z' —zo)z+ (w0 +2") (2" - x0)

!
= 2(z' - x0) (z+z0;—x )

33
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Thus,
1 4 z
v = )(eeXp(_j:Ro)/JLLHeXp( 2/\R iy _xo)(x_%;m))dx
H
1 ( ‘47TR ) eXp(_]/\‘l;%T xX —xo) (gj_ o+ ))
= —exp|-j—+
Xo A —J,\W(ZC - 0)
L
- A TH
! eXP( j47TR) exp(j AT ) moﬂc’) exp (i 5 (+/ = wo)x)
- —i="Ro)- (2 —xp) - ) o
X@ A )\Ro 2 —‘])\47}%0(1" —170) .
1 A 4m To + 2
- iRy 2 — )
XeeXp( iy 0) eXp(J/\RO(fI7 o) — )

)\417%0 (x/_xo);z:H) —exp( jARO (= —l’o)LL)

_jARo ('r —xo)

oxp (—j

We substitute for xy and zj, applicable to region I.

!
y(z') = XigeXp( ;R())'exp(j/\ll];:)(xl—xo)'%;x)

exp (=37 (2 = 20) (w0 + $ X)) = exp (=i 57 (2 = 20) (a = £ X))

_j,\R (:L’ —1'0)

Use

to express the correlator output as

1 4 4
y(z') = —exp (—j—ﬂ-Ro) - exp (j)\;(z' - zg)xo

+z i 4 (o ). xo+ T
X —]1— (T — X
X, \ p|-J 0

2 ARy 2

.exp( j)\Ro(x —xz9)(xo -2’ +X9))—exp(j (:U —x9)(xp -2’ +X9))

~Jxfis (2" = o)

Note that the second and third exponential factors cancel each other out. Use the identity

sin(¢) = e?

to express the correlator output as follows

Ar ) sin(%(x'—xo)(;r,o—:17’+X9))

1
') = —exp (— —R
v(@) = %, I & (2~ 20)

The right-most parenthesis inside the sin can be expressed as
xo—x'+X9 :Xg—(xl—.%'o) =X9—|I,—J)0|

The last equality hold in region I, where z’ > x3. Having the absolute value will be helpful further
on when we establish a single expression applicable to both regions I and II. Thus for region I,

(2.20)

Ar sin(%(w'—xo)(Xa—\a:’—a;0|))
) )

1
y(a') = 76XP(—]*R0 -
Xg )\LRO(LE’—LEQ)
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We will apply the same procedure to obtain an expression applicable to region II. We substi-
tute the appropriate xy and x, for that region, and apply the same identities as before.

, 1 4 4 +
v@) = %, eXp(_J;RO)'eXp(JA;( 2g) - 0 )
. 2T / 1
eXP( ])\RO(Z‘ —33‘0)(3“ + Xg))—exp( ]TRO(I‘ ‘1‘0)(1‘0-5)(9))

_j,\ﬂ— (m —SL‘())

/
exp (—jfgo (:C'—:Co)(x'—xo +X9)) - exp (j)\RO (2 —:vo)(x - T +X9))

—j )\417%70 (l.l _ 550)

1 Am Sin(f%o(ml—iﬁo)(w'—%w“)(e))
Loty
Xy A s (@' = o)

The right most parenthesis inside the sin can be expressed as
' —wo+Xg=Xg—(z0-2") = Xg — |2 — 30| = Xp — |19 — 2|

Thus,

, 1
y(x —exp 2.21
=5 (2:21)

( Ar )'Sin(f}%(x’—xo)(Xg—|x’—xg|))

-j~Ro v
A ,\270(33 )

Observe that equations 2.20 and 2.21 are identical. Therefore, the correlator output for both
regions I and II can be expressed by the bounded expression

-j—~—Ro

\ N N EP.C (2.22)

1
y(z') = ——exp

( dr ) sin(AR ' —xp)( Xy — |2’ —:v0|))
Xo

With slight manipulation, equation 2.22 can be expressed in terms of the sinc? function.

: 2m I 1
1 Ar sin ( 37— (x —x20)(Xg — |2’ = 20])
y(z') = fexp(—jTRo)- (27\' 0/ - )(Xg—|w'—xo|)
0 W(z —x0) (Xo — |2’ = o)
4 2 Xo—|2' -
= exp(—j%RO)-sinc()\—;o(x'—xo)(Xg—\x'—xd))% (2.23)
The magnitude of the correlated output is
2 Xo-|2' -

)] = [sine (2o o = 20) (X o =0 |- =20 (2.24)

Example 4

4The sinc(z) function is defined here as sin(z)

used in MATLAB™/Octave, is sin(rx)

T

. Another commonly used definition, including that which is
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y(a') 30

a0l

=50

—-60

corroutputplotfig.tex

Figure 2.18: A plot of the normalized correlator output (left). A zoomed in section £5 m about
the scatterer boresight.

Compute and plot the magnitude of the normalized correlation output for a scatterer at xg =
100 m. Assume the parameters of example 1 and example 3.

Solution
From previous examples A = 0.03 m, 6, = 0.03 rad and Ry = 5758.8 m. The illumination extent
for the given slant range is

Xp =0,Ro = (0.03 rad)(5758.8 m) = 172.8 m
The magnitude of the correlator output is thus

172.8 m - |z" — 100 m)|
172.8 m

ly (=)

. 2w , )
~100 m)(172.8 — |+~ 100 m]) || -
e ( (0.08 m) (5758.8 ) " m)( 2 ml))’

"~100| < 86.4
172.8 m? 172.8 m > |2 -100]<86.4 m

: ( (z' - 100 m)(172.8 — |z’ = 100 m]|) )‘ 172.8 m - |z’ - 100 m]
sinc | 2w .
A plot of |y(z")| is shown in figure 2.18. From the zoomed-in section (shown on the right) the

3 dB resolution appears to be about 0.45 m, which is in proximity with the expected value of
0.5 m.




Chapter 3

SAR Processing

3.1 The Optimal SAR Processor when no Range Migration
Occurs

Fill in theory...

Example 3

Consider a SAR based on example 1. If full SAR resolution is to be attained, how many scatterers
are to be processed in a 1 km cross-range swath? Describe the computational load involved in
processing, just this one range gate across the enter swath if a PRF of 200 Hz is utilized. Assume
the cross-range strip at ground range corresponding to the center of the beam footprint.

If the radar is to attain a slant range resolution equal to the cross-range resolution, what is
the pulse width that must be transmitted. What is the total processing load required to process
a 1 km range swath?

Solution
The ground range at the center of the beam footprint was computed in example 1 to be 5.671 km.
The illumination extent at that ground range is 172.7 m. The cross-range resolution limit is
range-independent and stands at 0.5 m.
This means the scatterers marked “abc...” in figure 2.17 are separated by half a meter. There
are 2000 assumed scatterers in the entire cross-range swath of 1 km at the range gate of interest.
Just to provide an idea of the processing load consider that for each of the 2000 assumed
scatterer locations, a quadratic phase removal has to be performed on pulse transmissions that
fall within 172.7 m. Between two pulse transmissions the radar platform traverses

Ve 100 m/s _
F. 200 Hz

Therefore, there are 173 pulse samples that fall within the illumination extent of each assumed
scatterer location. Those must have the quadratic phase removed from them and integrated.
This procedure is repeated for the 2000 scatterers being processed. Consider a quadratic phase
removal from a single sample as requiring a single complex operation, and subsequent integration
as also requiring a single complex operation per sample. The total complex operations required
for the range gate of interest, are thus,

b2

0.5 m

2000 x (2)173 = 692x10?

37
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To attain a slant range resolution equal to the cross-range resolution, which is 0.5 m, the
compressed pulse width must be:

2AR 2(0.5
T= = (0.5 m =3.3 uS
c 3 x 108 m/s

In a 1 km slant range swath, there are é‘skr; = 2000 range bins. Assume that for each cross-

range swath the number of complex operations is the same for all range bins. This, of course, is
only approximately true, as the number of pulse samples that must have a phase removal and
subsequent integration changes from range bin to range bin, since the illumination extent is a
function of distance (172.7 m is only at the center of the beam footprint).

Given that, the total computational load is 2000(692x10%) = 1.384x10?

Complete example...

Continue from here...



Appendix A

Simulation Code

This appendix contains the MATLAB™/Octave routines used to calculate results, perform sim-
ulations and generate graphs throughout the document.

A.1 Common

The following code defines some physical constants and conversion factors. It is accessed by
many of the routines that follow.

4 k*kkkxkkxk% Physical constants and conversion factors *¥xkkkxkx*x
c = 3e8; % [m/sec] J speed of light im wvaccuum

d2r = pi/180; % multiply with d2r to convert degrees to radians
r2d 180/pi; % multiply with r2d to convert radians to degrees
um2cm = le-4; J/ cm to um

ft2m = 12%x2.54/100; J foot to meter

The following routine is used to convert some 3D graphs on a rotated/sheared plane.

function xy = rotshear (thetax,thetay,xyz)

4 function zy = rotshear(thetazx, thetay,zyz)

VA Rotate and shear coordinate

VA Provide:

VA thetay = angle of y-axzis with respect to true <z
VA thetaz = angle of z-axis with respect to true y
VA zyz = true 3-D coordinate

VA Returns

A zy = 2-D

VA Written by Yaron Seliktar

xy = [cos(thetax) cos(thetay) 0; -sin(thetax) sin(thetay) 1]lx*xyz;

A.2 Code for example 1

The following code was used to generate the results for example 1.

39
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% Ezample 1: basic SAR simulation
% Written by Yaron Seliktar

clear

defs

% define and set flag to let exzamples files that depend on this one know %t
/% has been run
eglflag=1;

% System params

fc = 10e9; 74 [Hz] carrier frequency

La = 1; % [m] aperture length (along-track)

Wa = 1; % [m] aperture width (height)

tau = 10e-9; % [S] pulse width after pulse compression

% Positional params
ha = 1e3; 7 [m] platform height above nadir
vs = 100; % [m/s] platform speed (denoted vs in curlander)

% Computations

lambda = c/fc; % [m] wavelength

psi = 10%d2r; % [rad] angle of incidence / grazing angle / depression angle
gamma = pi/2-psi; 4 [rad] look angle

thetaa = lambda/La % [rad] horizontal beamwidth

thetae = lambda/Wa / [rad] wvertical beamwidth

4 swath
Rs = ha/cos(gamma) 7 [m] range to center of footprint
Rsmin = ha/cos(gamma-thetae/2) / [m] slant range to near end of footprint

Rsmax = ha/cos(gamma+thetae/2) J [m] slant range to far end of footprint

Rg = haxtan(gamma) 7/ [m] ground range at center of footprint

Rgmin = ha*tan(gamma-thetae/2) J [m] ground range to near end of footprint
Rgmax = hax*tan(gamma+thetae/2) J [m] ground range to far end of footprint

Ws = Rsx*thetae / [m] slant swath width

Wg = Ws/cos(psi) % [m] ground swath width

% rTesolution

delRs = cx*tau/2 7 [m] range (cell) resolution

delRg delRs*sec(psi); 7 ground resolution at footprint center

delRgmin = delRs*sec(psi-thetae/2); / ground resolution at near end of footprz
delRgmax = delRs*sec(psi+thetae/2); / ground resolution at far end of footprin
Ls = Rsxthetaa /7 [m] synthetic aperture length

%4 SLAR resolution

delX = thetaax*Rs; / [m] SLAR resolution at footprint center

/4 theoretical resolution

delXs = 0.5%La; /7 [m] theoretical limit on cross-range resolution

printf (’Provided:\n’);

printf (’y,platformheight,, (ha),=,%0.3f km\n’ ,ha);
printf (’,,carrierfreq,(fc) ,=4,%0.3f,GHz\n’ ,fc/1e9);
printf (’,,antennaywidth,(Wa),=,%0.2f m\n’,Wa);
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printf (’,,antennaylength(La),=,%0.2f ,m\n’,La);

printf (’,depressionyangle, (psi)y=u%0.2f ,degyu=,%0.4f ,rad\n’,psi*r2d,psi);

printf (’,,pulse durationpostycompression(tau), ,=,%0.2f, S \n’,taux*xleb);

printf (’Computed:\n’);

printf (’,,lookyangle () y=,%0.2f ,deg,=,%0.4f ,rad\n’,gamma*r2d, gamma) ;

printf (’y,wavelength,( )y,=,%0.4f, m\n’,lambda);

printf (’,,azimuth beamwidth,( a ), =4%0.2f deg,=u%0.4f rad\n’,thetaa*r2d,thetaa);
printf (’,elevation beamwidth,( a)y,=,%0.2f,deg,=,%0.4f rad\n’,thetae*r2d,thetae);
printf (’,,Rsyu=u%0.3f,km\n’ ,Rs/1e3);

printf (’,,Rsmin, = ,%0.3f km\n’ ,Rsmin/1e3);

printf (’,,Rsmax,=,%0.3f km\n’,Rsmax/1e3);

printf (’,Rgu=u%0.3f,km\n’ ,Rg/1e3);

printf (’, Rgmin, =,%0.3f ,km\n’ ,Rgmin/1e3);

printf (’,Rgmax,=,%0.3f,km\n’ ,Rgmax/1e3);

printf (’,,delRs,=,%0.3f m\n’,delRs);

printf (’,,delRg,=,%0.3f m\n’,delRg) ;

printf (’,,delRgmin,=,%0.3f m\n’,delRgmin) ;

printf (’,delRgmax=,%0.3f um\n’,delRgmax) ;

printf (’,,delX (SLAR) ,=,%0.3f m\n’,delX);

printf (’,,delXs (SAR) ,=,%0.3f m\n’,delXs);

A.3 Code for figure 2.8

The following simulation code was used to generate figure 2.8.

/% egspectrogram.m - computes a sample spectrogram of raw PRI samples
4 to tllustrate how Doppler and cross-range are related.

4 Written by Yaron Seliktar

clear

physconst
conversions;

4 params

fc = 10e9; / [Hz] carrier frequency

lambda = c/fc; % [m] wavelength

vst = 100; % [m/s] aircraft speeds

RO = 10000; % [m] mominal (at boresight) slant range

M = 1000; % [] number of pulses collected in observation interval
Fr = 2e3; J [Hz] pulse retition rate = mazimum unambiguous Doppler

/% define scatterer points im cross range.
phidel = [-0.5:0.01:0.5];
Adel = exp(-phidel.”2x%20);

phisdeg = [-7+phidel -2+phidel 4.5+phidell; % [deg] scatterer angles
Ns = length(phisdeg); 7/ [] No. scatterers
As = kron([3 1 5],Adel); % [] relative amplitude of scatterers
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/4 convert to Doppler

fd = 2xvst*sin(phisdeg*d2r)/lambda;
% mormalized Doppler

fdn = fd/Fr;

r = zeros(1,M);
mrang = [0:M-1];
for s=1:Ns
r = r + As(s)*xexp(j*2*pi*mrang*fdn(s));
end

4 Spectrogram of return samples for given range gate
fdrang = Fr*((0:M-1)-M/2)/M; J Doppler azis

Frr = fft(r);

Frrabs = abs(fftshift (Frr));

4 display results
plot (fdrang,Frrabs);

A.4 Code for figure 2.10

The following code was used to help generate figure 2.10.

% Exzample 2: Iso-Doppler contours
4 Written by Yaron Seliktar
if exist(’eglflag’,’var’)
va = 100; % [m/s] aircraft speeds

M = 1000; 7 [] number of pulses collected in observation interval
Fr = 2e3; / [Hz] pulse retition rate = mazimum unambiguous Doppler

£fd0 = [200]; % [Hz] Doppler of scatterer at time zero for <iso-Doppler
%4 Cross-range coordinates for which to compute contour

xp = [0:1e3]; % [m] positive cross-range coord’s
xn = -xp(end:-1:1); % [m] negative cross-range coord’s

Rgscale = 0.05; 7 [] scale factor for Rg azis

printf (’Provided:\n’);

printf (’yuplatform,speedyrelative toyEarth(va),=,%0.3f m/s\n’,va);
printf (’,ynumber of ypulses (M), =,%d\n’ ,M);

printf (’,PRF,(Fr) =,%0.1f,Hz\n’ ,Fr);

printf (’,,iso-Doppler contour,(£fd0),=,%0.1f Hz\n’,£d0);

%4 Iso-Doppler computations

k1 = 2xva/lambda;

/4 compute for positive cross-range coord’s
idx1 = find(xp. 2*x(k172/£fd0"2-1)<ha"2);
Rgp = sqrt(xp.~2*k1°2/£fd0."2-ha"2);

Rgp (idx1) = nan;

idx2 = find('isnan(Rgp));

xpl = xp(idx2);

contou
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Rgpl = Rgp(idx2);

% =-> compute Rg scaling factor

Rgscale = xp(end)/Rgp(end); /% scales things so that z,y azes are of eq. length
Rgscale = 0.02; 7 use a scale that makes the plot "look good"

% => compute for mnegative cross-range coord’s
xnl = -xpl;
Rgnl = -Rgpil;

% Iso-delay computations

/4 -> select delay for which to compute %so-delay contour
Rs = 807; % [m] Tange of scatterer

Ataus = 2*c/Rs; J [m] delay of scatterer at first pulse
% "2 + Rg"2 = Rs"2

xx = [0:10:Rs];

Rgiso = sqrt(Rs"2 - xx.72);

% Plots

figure (1)
plot(xnl1/1e3,Rgnl/1e3); hold on
plot(xnl/1e3,-Rgnl/1e3);
plot(xpl/1e3,Rgpl/1e3);
plot(xpl/1e3,-Rgpl/1e3);
plot(xx/1e3,-Rgiso/1e3);
hold off

xlabel (’cross-range, [km] ’);
ylabel (’Rg. [km] ’);

grid

% =-> plot iso-Doppler on a rotated and sheared plane

thetal = 0.46365;

aa = rotshear (thetal,thetal,[xpl; Rgnl*Rgscale; zeros(l,length(xpl))]);

bb = rotshear (thetal,thetal,[xpl; -Rgnl*Rgscale; zeros(l,length(xpl))]);
cc = rotshear (thetal,thetal,[xnl; Rgni*Rgscale; zeros(l,length(xni1))]);

dd = rotshear (thetal,thetal,[xnl; -Rgni*Rgscale; zeros(l,length(xnl))]);
4 —-=> xz-azis

xx1 = [0 max(xpl)];

A -=> y-azis

yyl = [0 max(Rgpl*Rgscale)];

4 --> z-azxis

zz1 = [0 hal;

ee = rotshear (thetal,thetal,[xx1; 0 0; 0 0]);
ff = rotshear (thetal,thetal,[0 O; yyl; O 0]1);
gg = rotshear (thetal,thetal ,[0 0; 0 0; zzl1]);

figure (2)

/ contours
plot(aa(l,:),aa(2,:)); hold on
plot(bb(1,:),bb(2,:));
plot(cc(l,:),cc(2,:));
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plot (dd(1,:),dd(2,:));

J azes
plot(ee(1l,:),ee(2,:),°k?);
plot (££f(1,:),ff(2,:),°k’);
plot(gg(l,:),gg(2,:),°k?);

4 —-> plot iso-delay on a rotated and sheared plane

hh = rotshear (thetal,thetal,[xx; Rgiso; zeros(1l,length(xx))]);

ii = rotshear (thetal,thetal,[xx(end:-1:1); -Rgiso(end:-1:1); zeros(l,length(
plot ([hh(1,:) ii(1,:)],[hh(2,:) ii(2,:)1);

hold off

else

printf ("Must run eglsar first.\n")

end

A.5 Code for example 2

The following code was used to generate the results for example 2.

A
A

Ezxzample 2: unfocused SAR resolution
Written by Yaron Seliktar

if exist(’eglflag’,’var’)

va = 100; % [m/s] aircraft speeds
eg2flag=1;

RO = Rs; % [m] range to center of footprint, we’ll make it range to scattere
X = sqrt(RO*xlambda/2); % [m] range over which unfocused SAR integrates

Sufoc = X/va; / [sec] unfocused interval of observation/integration
delxunfoc = RO*lambda/(2*va)/Sufoc; % [m] cross-range resolution

printf (’Provided:\n’);

printf (’,,ROL=,%0.3f km, (from example ;1)\n’,Rs/1e3);
printf (’Computed:\n’);

printf (’ L Xu=u%0.3fum\n’ ,X);

printf (’,,Sufoc,=,%0.2f mS\n’,Sufoc*1e3);

printf (’,delxunfoc,=,%0.3f m\n’,delxunfoc);

else

printf ("Must run eglsar first.\n")

end

A.6 Code for example 3

The following code was used to generate the results for example 3.

V4
4

Illustrate deviation of quadratic phase from true relative phase
Written by Yaron Seliktar

if exist(’eglflag’,’var’)

/4 obtained from egl
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x0 0; % [m] cross-range coordinate of scatterer

RO Rs; 7 [m] range to center of footprint, we’ll make it range to scatterer
% newly defined parameters

va = 100; % [m/s] aircraft speeds

M = 10000; /% number of pulses collected in observation interval

Fr = 2e3; J [Hz] pulse retition rate = maxzimum unambiguous Doppler

/% computed

Tr = 1/Fr; % [S] PRI

X = MxTrx*va; / [m] distance covered by platform during data collection
/% Delta R

m = [0:M-1]; 7/ pulse <indecies

x = m*Tr*xva;

delRappx = (x-x0).°2/(2*R0O);
Rx = sqrt(ha"2+(x-x0)."2+Rg."2);
delR = Rx - RO;

% relative phase
delphi = 4*pi*delR/lambda;
delphiappx = 4*pixdelRappx/lambda;

printf (’Provided:\n’);

printf (’yuplatformyheight (ha),=,%0.3f ,km\n’ ,ha);

printf (’,yuplatformspeedyrelative toyEarth(va) =,%0.3f m/s\n’,va);

printf (’,ynumber of ypulses, (M) ,=,%d\n’ ,M);

printf (°,PRF,(Fr)=,%0.1f ,Hz\n’ ,Fr);

printf (’,,ROL=,%0.3f ,km\n’ ,R0/1e3);

printf (’,,Cross-range beamwidth,=,%0.1f m\n’,delX);

printf (’Computed:\n’);

printf (’, Distance traversed by aircraft during,collection,,=,%0.3f km\n’,X/1e3);

figure (1);

subplot (3,1,1);

plot(x,delR,’b’,x,delRappx,’g’);

title (’delRyand quadratic apprx,toydelR’);

ylabel (’delR,(m)’);

subplot (3,1,2);

plot(x,2*abs (delR-delRappx)/lambda, ’b’);
title(’errorbetween delR and  quadraticapprx,to,delR normalized to,lambda’);
ylabel (’delR,(m)’);

axis ([0 500 0 11);

subplot (3,1,3);

plot (x,abs(delphi-delphiappx),’b’);

title(’error between, true and,’);
title(’errorubetweenudelphiuanduquadraticuapprxutoudelphiunormalizedutoulambda’);
ylabel (’delR,(m)’);

xlabel (’cross-range, (m)’);

axis ([0 500 0 71);

egdflag=1;
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else
printf ("Must run eglsar first.\n")
end

A.7 Code for example 4

The following code was used to generate the results for example 4.

%4 Illustrate correlation output
4 Written by Yaron Seliktar
zoomflag=0;
if exist(’egéflag’,’var’)
% obtained from egl
x0 = 100; % [m] cross-range coordinate of scatterer
RO = Rs; 4 [m] range to center of footprint, we’ll make it Tange to scattere
/% obtained from eg3
Xtheta=thetaa*Rs; / extent of 4llumination at slant range
dxt = 0.5; % increment of zt wvector
dxt = 0.1; J 4ncrement of =zt wvector
if zoomflag
xt = x0+[-5:dxt/4:5]1; J zoom 1in
else
xt = 0:dxt:200; 7 cross-range grid at which to evaluate correlation output
end
idx = find(xt>x0-Xtheta/2 & xt<xO0+Xtheta/2);

al xt (idx)-x0;
a2 = Xtheta-abs(xt(idx)-x0);

z1 = sin( (2*pi/lambda/RO)*al.*a2 );

z2 = (2*pi/lambda/RO)*alx*xXtheta;

z3 = exp(-j*4*pi*R0O); 7 phase of output
zt = zeros(l,length(xt));

zt (idx) = z1./22;

yl = pixsinc( (2*pi/lambda/RO)*al.*xa2/pi );
y2 inv(Xtheta)*a2/pi;

yt zeros (1,length(xt));

yt(idx) = yl.*y2;

clf

Aplot (zt,yt, ’*7);

ylabel (’y’);

if zoomflag
plot (xt-x0,20%x1logl0(yt));
xlabel (’x’’-x0);
axis([-5 5 -60 0]);

else
plot (xt ,20%1ogl10(yt));
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axis ([0 200 -60 0]);
xlabel (’x7°7);
end
grid on
else
printf ("Must run eg3quadphaseerr first.\n")
end
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